Improved foreign object tracking algorithm in coal for belt conveyor gangue selection robot with YOLOv7 and DeepSORT

人工智能 计算机科学 跟踪(教育) 视频跟踪 计算机视觉 背景(考古学) 精确性和召回率 算法 目标检测 对象(语法) 模式识别(心理学) 心理学 古生物学 教育学 生物
作者
Dengjie Yang,Changyun Miao,Yi Liu,Yimin Wang,Yao Zheng
出处
期刊:Measurement [Elsevier]
卷期号:228: 114180-114180 被引量:3
标识
DOI:10.1016/j.measurement.2024.114180
摘要

Given the indistinct dissimilarities between foreign matter and coal in terms of their physical characteristics, the utilization of machine vision detection technology for foreign matter tracking yields suboptimal accuracy and precision, thereby failing to satisfy the exigencies of coal mine production. In this paper, we proffer an enhanced you only look once version 7 (YOLOv7) and simple online and realtime tracking with a deep association metric (DeepSORT) algorithm for the purpose of tracking foreign entities in the coal domain. The YOLOv7 network model undergoes enhancements through the reduction of Backbone convolutional layers, the introduction of the context overlap and transition network (COTN) module, and the incorporation of a compact target detection layer. Concurrently, the DeepSORT tracking algorithm is refined by substituting the re-recognition network structure of DeepSORT with the machine translation interface (MTL) framework and replacing the DeepSORT foreign object tracking algorithm with the occlusion-aware spatial attention (OSA) module. Empirical findings substantiate the efficacy of the proposed algorithm, as it successfully achieves foreign object detection and tracking. Specifically, the algorithm attains a foreign object detection accuracy of 91.3% and a recall rate of 90.6%. In addition, it achieves a tracking accuracy of 76.1% for multiple object tracking accuracy (MOTA), and a precision rate of 80.6% for multiple object tracking precision (MOTP). Notably, in comparison to the DeepSORT tracking algorithm, the proposed algorithm exhibits a significant improvement of 6 percentage points in MOTA and 3.9 percentage points in MOTP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小洪俊熙完成签到,获得积分10
刚刚
123完成签到,获得积分10
刚刚
SYLH应助di采纳,获得10
刚刚
刚刚
柒毛完成签到 ,获得积分10
1秒前
搜集达人应助tatata采纳,获得20
1秒前
英俊的铭应助诚c采纳,获得10
1秒前
兔子完成签到 ,获得积分10
1秒前
1秒前
苹果巧蕊完成签到 ,获得积分10
1秒前
脑洞疼应助SDS采纳,获得10
1秒前
JamesPei应助Guo采纳,获得20
2秒前
马保国123完成签到,获得积分10
2秒前
2秒前
2秒前
迷你的冰巧完成签到,获得积分10
2秒前
万能图书馆应助学术蝗虫采纳,获得10
3秒前
慕青应助aurora采纳,获得30
3秒前
Jasper应助满意的盼夏采纳,获得10
3秒前
yitang完成签到,获得积分10
5秒前
www完成签到,获得积分10
5秒前
zhenzhen发布了新的文献求助10
5秒前
飞羽发布了新的文献求助10
5秒前
江沅完成签到 ,获得积分10
5秒前
6秒前
6秒前
Sean完成签到,获得积分10
6秒前
兜兜完成签到 ,获得积分10
6秒前
羊羊羊发布了新的文献求助10
7秒前
Rui完成签到,获得积分10
7秒前
bigger.b完成签到,获得积分10
7秒前
Nerissa完成签到,获得积分10
7秒前
Dr.Tang发布了新的文献求助10
7秒前
7秒前
田様应助笑点低蜜蜂采纳,获得10
7秒前
英俊的铭应助么系么系采纳,获得10
8秒前
ding应助寒冷的奇异果采纳,获得10
8秒前
lx发布了新的文献求助10
9秒前
舒适念真发布了新的文献求助10
9秒前
沉默哈密瓜完成签到 ,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678