Improved foreign object tracking algorithm in coal for belt conveyor gangue selection robot with YOLOv7 and DeepSORT

人工智能 计算机科学 跟踪(教育) 视频跟踪 计算机视觉 背景(考古学) 精确性和召回率 算法 目标检测 对象(语法) 模式识别(心理学) 心理学 古生物学 教育学 生物
作者
Dengjie Yang,Changyun Miao,Yi Liu,Yimin Wang,Yao Zheng
出处
期刊:Measurement [Elsevier]
卷期号:228: 114180-114180 被引量:21
标识
DOI:10.1016/j.measurement.2024.114180
摘要

Given the indistinct dissimilarities between foreign matter and coal in terms of their physical characteristics, the utilization of machine vision detection technology for foreign matter tracking yields suboptimal accuracy and precision, thereby failing to satisfy the exigencies of coal mine production. In this paper, we proffer an enhanced you only look once version 7 (YOLOv7) and simple online and realtime tracking with a deep association metric (DeepSORT) algorithm for the purpose of tracking foreign entities in the coal domain. The YOLOv7 network model undergoes enhancements through the reduction of Backbone convolutional layers, the introduction of the context overlap and transition network (COTN) module, and the incorporation of a compact target detection layer. Concurrently, the DeepSORT tracking algorithm is refined by substituting the re-recognition network structure of DeepSORT with the machine translation interface (MTL) framework and replacing the DeepSORT foreign object tracking algorithm with the occlusion-aware spatial attention (OSA) module. Empirical findings substantiate the efficacy of the proposed algorithm, as it successfully achieves foreign object detection and tracking. Specifically, the algorithm attains a foreign object detection accuracy of 91.3% and a recall rate of 90.6%. In addition, it achieves a tracking accuracy of 76.1% for multiple object tracking accuracy (MOTA), and a precision rate of 80.6% for multiple object tracking precision (MOTP). Notably, in comparison to the DeepSORT tracking algorithm, the proposed algorithm exhibits a significant improvement of 6 percentage points in MOTA and 3.9 percentage points in MOTP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
传奇3应助niko采纳,获得10
1秒前
在水一方应助从容保温杯采纳,获得10
1秒前
1秒前
1秒前
2秒前
3秒前
3秒前
热心的翩跹完成签到,获得积分10
3秒前
3秒前
hbydyy发布了新的文献求助10
3秒前
小鹿发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
Orange应助李up采纳,获得10
4秒前
打打应助11采纳,获得10
4秒前
ahriwang发布了新的文献求助10
4秒前
deng完成签到,获得积分20
4秒前
abc发布了新的文献求助10
5秒前
丘比特应助灬卍冉采纳,获得10
5秒前
抽纸盒发布了新的文献求助10
5秒前
猪猪hero发布了新的文献求助10
5秒前
HJJHJH发布了新的文献求助10
5秒前
6秒前
7秒前
桃掉烦恼完成签到,获得积分10
7秒前
feifei发布了新的文献求助10
7秒前
思源应助小猪存钱罐采纳,获得10
7秒前
无情的薯片完成签到,获得积分10
8秒前
8秒前
8秒前
lyh发布了新的文献求助10
8秒前
zhaokkkk完成签到,获得积分10
8秒前
烟花应助nwds采纳,获得10
9秒前
李健的粉丝团团长应助Ankh采纳,获得10
9秒前
deng发布了新的文献求助30
9秒前
9秒前
9秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5512346
求助须知:如何正确求助?哪些是违规求助? 4606639
关于积分的说明 14500751
捐赠科研通 4542109
什么是DOI,文献DOI怎么找? 2488840
邀请新用户注册赠送积分活动 1470931
关于科研通互助平台的介绍 1443123