Improved foreign object tracking algorithm in coal for belt conveyor gangue selection robot with YOLOv7 and DeepSORT

人工智能 计算机科学 跟踪(教育) 视频跟踪 计算机视觉 背景(考古学) 精确性和召回率 算法 目标检测 对象(语法) 模式识别(心理学) 心理学 教育学 生物 古生物学
作者
Dengjie Yang,Changyun Miao,Yi Liu,Yimin Wang,Yao Zheng
出处
期刊:Measurement [Elsevier]
卷期号:228: 114180-114180 被引量:21
标识
DOI:10.1016/j.measurement.2024.114180
摘要

Given the indistinct dissimilarities between foreign matter and coal in terms of their physical characteristics, the utilization of machine vision detection technology for foreign matter tracking yields suboptimal accuracy and precision, thereby failing to satisfy the exigencies of coal mine production. In this paper, we proffer an enhanced you only look once version 7 (YOLOv7) and simple online and realtime tracking with a deep association metric (DeepSORT) algorithm for the purpose of tracking foreign entities in the coal domain. The YOLOv7 network model undergoes enhancements through the reduction of Backbone convolutional layers, the introduction of the context overlap and transition network (COTN) module, and the incorporation of a compact target detection layer. Concurrently, the DeepSORT tracking algorithm is refined by substituting the re-recognition network structure of DeepSORT with the machine translation interface (MTL) framework and replacing the DeepSORT foreign object tracking algorithm with the occlusion-aware spatial attention (OSA) module. Empirical findings substantiate the efficacy of the proposed algorithm, as it successfully achieves foreign object detection and tracking. Specifically, the algorithm attains a foreign object detection accuracy of 91.3% and a recall rate of 90.6%. In addition, it achieves a tracking accuracy of 76.1% for multiple object tracking accuracy (MOTA), and a precision rate of 80.6% for multiple object tracking precision (MOTP). Notably, in comparison to the DeepSORT tracking algorithm, the proposed algorithm exhibits a significant improvement of 6 percentage points in MOTA and 3.9 percentage points in MOTP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chen发布了新的文献求助30
1秒前
舒心亦凝发布了新的文献求助10
3秒前
3秒前
钟意完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
asdjf完成签到 ,获得积分10
6秒前
6秒前
核桃发布了新的文献求助10
6秒前
李爱国应助徐桐采纳,获得10
8秒前
汉堡包应助科研通管家采纳,获得10
8秒前
dynamoo应助科研通管家采纳,获得10
8秒前
wanci应助科研通管家采纳,获得10
8秒前
汉堡包应助科研通管家采纳,获得10
8秒前
乐观小之应助科研通管家采纳,获得10
8秒前
钟意发布了新的文献求助10
9秒前
客服小祥应助科研通管家采纳,获得10
9秒前
如意觅露应助科研通管家采纳,获得10
9秒前
zhonglv7应助科研通管家采纳,获得10
9秒前
Akim应助科研通管家采纳,获得10
9秒前
9秒前
Akim应助科研通管家采纳,获得10
9秒前
所所应助科研通管家采纳,获得10
9秒前
9秒前
汪汪发布了新的文献求助10
9秒前
大模型应助科研通管家采纳,获得10
9秒前
star应助科研通管家采纳,获得150
9秒前
anan应助科研通管家采纳,获得10
9秒前
Hello应助科研通管家采纳,获得20
9秒前
充电宝应助科研通管家采纳,获得30
9秒前
烟花应助科研通管家采纳,获得10
9秒前
大模型应助布谷采纳,获得10
9秒前
完美世界应助科研通管家采纳,获得10
10秒前
乐观小之应助科研通管家采纳,获得10
10秒前
科研通AI6应助科研通管家采纳,获得30
10秒前
英姑应助科研通管家采纳,获得30
10秒前
Jasper应助科研通管家采纳,获得10
10秒前
领导范儿应助科研通管家采纳,获得10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
On the Angular Distribution in Nuclear Reactions and Coincidence Measurements 1000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5308956
求助须知:如何正确求助?哪些是违规求助? 4453860
关于积分的说明 13858358
捐赠科研通 4341612
什么是DOI,文献DOI怎么找? 2384051
邀请新用户注册赠送积分活动 1378620
关于科研通互助平台的介绍 1346619