Unsupervised CT Metal Artifact Reduction by Plugging Diffusion Priors in Dual Domains

人工智能 计算机科学 先验概率 工件(错误) 模式识别(心理学) 无监督学习 领域(数学分析) 计算机视觉 图像(数学) 数学 数学分析 贝叶斯概率
作者
X. Liu,Yaoqin Xie,Songhui Diao,Shan Tan,Xiaokun Liang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (10): 3533-3545 被引量:7
标识
DOI:10.1109/tmi.2024.3351201
摘要

During the process of computed tomography (CT), metallic implants often cause disruptive artifacts in the reconstructed images, impeding accurate diagnosis. Many supervised deep learning-based approaches have been proposed for metal artifact reduction (MAR). However, these methods heavily rely on training with paired simulated data, which are challenging to acquire. This limitation can lead to decreased performance when applying these methods in clinical practice. Existing unsupervised MAR methods, whether based on learning or not, typically work within a single domain, either in the image domain or the sinogram domain. In this paper, we propose an unsupervised MAR method based on the diffusion model, a generative model with a high capacity to represent data distributions. Specifically, we first train a diffusion model using CT images without metal artifacts. Subsequently, we iteratively introduce the diffusion priors in both the sinogram domain and image domain to restore the degraded portions caused by metal artifacts. Besides, we design temporally dynamic weight masks for the image-domian fusion. The dual-domain processing empowers our approach to outperform existing unsupervised MAR methods, including another MAR method based on diffusion model. The effectiveness has been qualitatively and quantitatively validated on synthetic datasets. Moreover, our method demonstrates superior visual results among both supervised and unsupervised methods on clinical datasets. Codes are available in github.com/DeepXuan/DuDoDp-MAR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助jjjeneny采纳,获得10
3秒前
3秒前
科研通AI5应助袁衣采纳,获得30
3秒前
传奇3应助HJJHJH采纳,获得10
4秒前
4秒前
共享精神应助内澈采纳,获得10
7秒前
8秒前
热情的嫣娆完成签到,获得积分10
9秒前
ZK完成签到,获得积分10
10秒前
11秒前
粥小周发布了新的文献求助10
11秒前
13秒前
袁衣发布了新的文献求助30
14秒前
粥小周完成签到,获得积分10
16秒前
ZK发布了新的文献求助10
17秒前
17秒前
fffzy完成签到,获得积分10
18秒前
顾难摧发布了新的文献求助10
18秒前
一一应助科研的牲口采纳,获得10
19秒前
Jasper应助美好朝雪采纳,获得10
19秒前
19秒前
烟花应助FightingW采纳,获得10
24秒前
24秒前
羽化完成签到 ,获得积分10
25秒前
缓慢如南应助飞常美丽采纳,获得10
25秒前
丘比特应助无辜秋珊采纳,获得10
27秒前
Wlx完成签到,获得积分20
30秒前
kai0305完成签到,获得积分10
30秒前
闪闪的YOSH完成签到,获得积分10
31秒前
充电宝应助sun采纳,获得10
31秒前
32秒前
缓慢如南应助飞常美丽采纳,获得10
33秒前
Wlx发布了新的文献求助10
33秒前
丘比特应助hhc采纳,获得10
35秒前
橙子味的邱憨憨完成签到 ,获得积分10
36秒前
boshi发布了新的文献求助10
37秒前
不懂白完成签到 ,获得积分10
37秒前
37秒前
39秒前
40秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Time Matters: On Theory and Method 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3559794
求助须知:如何正确求助?哪些是违规求助? 3134246
关于积分的说明 9406240
捐赠科研通 2834289
什么是DOI,文献DOI怎么找? 1558019
邀请新用户注册赠送积分活动 727812
科研通“疑难数据库(出版商)”最低求助积分说明 716522