Enhancing ReaxFF for molecular dynamics simulations of lithium-ion batteries: an interactive reparameterization protocol

雷亚克夫 分子动力学 电解质 材料科学 力场(虚构) 纳米技术 计算机科学 化学 计算化学 物理化学 电极 原子间势 人工智能
作者
Paolo De Angelis,Roberta Cappabianca,Matteo Fasano,Pietro Asinari,Eliodoro Chiavazzo
出处
期刊:Scientific Reports [Springer Nature]
卷期号:14 (1) 被引量:2
标识
DOI:10.1038/s41598-023-50978-5
摘要

Abstract Lithium-ion batteries (LIBs) have become an essential technology for the green economy transition, as they are widely used in portable electronics, electric vehicles, and renewable energy systems. The solid-electrolyte interphase (SEI) is a key component for the correct operation, performance, and safety of LIBs. The SEI arises from the initial thermal metastability of the anode-electrolyte interface, and the resulting electrolyte reduction products stabilize the interface by forming an electrochemical buffer window. This article aims to make a first—but important—step towards enhancing the parametrization of a widely-used reactive force field (ReaxFF) for accurate molecular dynamics (MD) simulations of SEI components in LIBs. To this end, we focus on Lithium Fluoride (LiF), an inorganic salt of great interest due to its beneficial properties in the passivation layer. The protocol relies heavily on various Python libraries designed to work with atomistic simulations allowing robust automation of all the reparameterization steps. The proposed set of configurations, and the resulting dataset, allow the new ReaxFF to recover the solid nature of the inorganic salt and improve the mass transport properties prediction from MD simulation. The optimized ReaxFF surpasses the previously available force field by accurately adjusting the diffusivity of lithium in the solid lattice, resulting in a two-order-of-magnitude improvement in its prediction at room temperature. However, our comprehensive investigation of the simulation shows the strong sensitivity of the ReaxFF to the training set, making its ability to interpolate the potential energy surface challenging. Consequently, the current formulation of ReaxFF can be effectively employed to model specific and well-defined phenomena by utilizing the proposed interactive reparameterization protocol to construct the dataset. Overall, this work represents a significant initial step towards refining ReaxFF for precise reactive MD simulations, shedding light on the challenges and limitations of ReaxFF force field parametrization. The demonstrated limitations emphasize the potential for developing more versatile and advanced force fields to upscale ab initio simulation through our interactive reparameterization protocol, enabling more accurate and comprehensive MD simulations in the future.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wen完成签到,获得积分10
1秒前
兰康康发布了新的文献求助10
2秒前
小红勇闯科研界完成签到,获得积分10
3秒前
3秒前
Akim应助雪白曼寒采纳,获得10
3秒前
赘婿应助hugo采纳,获得10
4秒前
4秒前
晗晗有酒窝发布了新的文献求助100
5秒前
阔达尔芙完成签到,获得积分10
6秒前
丘比特应助金同学采纳,获得10
6秒前
朴实凝阳完成签到,获得积分10
6秒前
啊呜完成签到,获得积分10
7秒前
jackten发布了新的文献求助10
7秒前
cai发布了新的文献求助10
8秒前
认真向珊完成签到,获得积分20
10秒前
朴实凝阳发布了新的文献求助10
10秒前
10秒前
兰康康完成签到,获得积分10
11秒前
11秒前
11秒前
小白一个完成签到,获得积分10
11秒前
123发布了新的文献求助10
11秒前
李新祎完成签到,获得积分20
12秒前
天天快乐应助小西采纳,获得10
13秒前
14秒前
认真向珊发布了新的文献求助20
14秒前
15秒前
yllllllll发布了新的文献求助10
15秒前
买桃子去发布了新的文献求助10
15秒前
张梦完成签到,获得积分10
16秒前
雪白曼寒发布了新的文献求助10
18秒前
传奇3应助GinFF采纳,获得10
19秒前
bkagyin应助大力日记本采纳,获得10
21秒前
林夕完成签到,获得积分10
22秒前
失眠的弼完成签到 ,获得积分10
22秒前
24秒前
雪白曼寒完成签到,获得积分10
24秒前
24秒前
落后山晴发布了新的文献求助10
26秒前
赵小麦完成签到,获得积分20
26秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
歯科矯正学 第7版(或第5版) 1004
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Security Awareness: Applying Practical Cybersecurity in Your World 6th Edition 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3241206
求助须知:如何正确求助?哪些是违规求助? 2885773
关于积分的说明 8240433
捐赠科研通 2554262
什么是DOI,文献DOI怎么找? 1382427
科研通“疑难数据库(出版商)”最低求助积分说明 649586
邀请新用户注册赠送积分活动 625199