亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi source deep learning method for drug-protein interaction prediction using k-mers and chaos game representation

混沌(操作系统) 代表(政治) 计算机科学 人工智能 机器学习 模式识别(心理学) 计算机安全 政治 政治学 法学
作者
Hengame Abbasi Mesrabadi,Karim Faez,Jamshid Pirgazi
出处
期刊:Chemometrics and Intelligent Laboratory Systems [Elsevier]
卷期号:246: 105065-105065
标识
DOI:10.1016/j.chemolab.2024.105065
摘要

Identification of drug-protein interactions plays an important role in drug discovery. Development of new calculation methods, which have high accuracy solve the problems related to the previous methods, which were expensive and time-consuming. In this article, a new model for drug-protein interactions, and a new mapping approach to represent drug-protein sequences are proposed. The proposed model consists of four parts: drug and protein descriptor section, Drug CNN and Protein CNN sections, Encoder section and classification section. In this method, first the data is prepared. At this stage, the totals are equal to each other. Then in the next step using the k-mers method and Chaos Game, the sequence of drug and protein becomes an image. In the next step, the image is used to train CNN models. These images serve as the input of independent networks for the drug and are considered as a protein. These networks are used to extract feature from drug and protein. In the last layer of these networks, features extracted from drug and protein sequences combine with each other. After concatenating, the number of features will raise. To reduce the number of features and to extract more efficient features, a Variational Autoencoder is used. In the last step, this combined feature vector is used to train machine learning models. The proposed method has been tested and evaluated on 6 standard data sets. The results of the experiments show that the proposed method has an acceptable performance compared to other methods in this data set.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
7秒前
pinklay完成签到 ,获得积分10
7秒前
babe完成签到,获得积分10
13秒前
程小柒完成签到 ,获得积分10
17秒前
Lucas应助goya采纳,获得10
17秒前
斯文的苡完成签到,获得积分10
22秒前
maox1aoxin应助美丽化学采纳,获得30
26秒前
hanshiyi完成签到,获得积分10
33秒前
Lynn完成签到,获得积分10
36秒前
方赫然应助hanshiyi采纳,获得10
37秒前
asaki完成签到,获得积分10
48秒前
51秒前
goya发布了新的文献求助10
56秒前
虚幻乘云完成签到,获得积分10
56秒前
58秒前
kookkiki完成签到 ,获得积分10
1分钟前
天天快乐应助lmc采纳,获得10
1分钟前
goya完成签到,获得积分10
1分钟前
虚幻乘云发布了新的文献求助10
1分钟前
1分钟前
鲨猫收藏家完成签到 ,获得积分0
1分钟前
1分钟前
1分钟前
辣椒完成签到 ,获得积分10
1分钟前
lmc发布了新的文献求助10
1分钟前
我是老大应助沉静的冥幽采纳,获得10
1分钟前
Chris完成签到 ,获得积分10
1分钟前
wanci应助科研通管家采纳,获得10
1分钟前
李爱国应助科研通管家采纳,获得10
1分钟前
思源应助科研通管家采纳,获得10
1分钟前
lmc完成签到,获得积分10
1分钟前
千寻完成签到,获得积分10
1分钟前
1分钟前
等待的花生完成签到,获得积分10
1分钟前
姚奋斗完成签到,获得积分10
1分钟前
1分钟前
naomi完成签到 ,获得积分10
1分钟前
norberta发布了新的文献求助10
2分钟前
火星仙人掌完成签到 ,获得积分10
2分钟前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 850
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3248713
求助须知:如何正确求助?哪些是违规求助? 2892119
关于积分的说明 8270068
捐赠科研通 2560255
什么是DOI,文献DOI怎么找? 1388965
科研通“疑难数据库(出版商)”最低求助积分说明 650927
邀请新用户注册赠送积分活动 627823