Multi source deep learning method for drug-protein interaction prediction using k-mers and chaos game representation

混沌(操作系统) 代表(政治) 计算机科学 人工智能 机器学习 模式识别(心理学) 政治学 计算机安全 政治 法学
作者
Hengame Abbasi Mesrabadi,Karim Faez,Jamshid Pirgazi
出处
期刊:Chemometrics and Intelligent Laboratory Systems [Elsevier BV]
卷期号:246: 105065-105065
标识
DOI:10.1016/j.chemolab.2024.105065
摘要

Identification of drug-protein interactions plays an important role in drug discovery. Development of new calculation methods, which have high accuracy solve the problems related to the previous methods, which were expensive and time-consuming. In this article, a new model for drug-protein interactions, and a new mapping approach to represent drug-protein sequences are proposed. The proposed model consists of four parts: drug and protein descriptor section, Drug CNN and Protein CNN sections, Encoder section and classification section. In this method, first the data is prepared. At this stage, the totals are equal to each other. Then in the next step using the k-mers method and Chaos Game, the sequence of drug and protein becomes an image. In the next step, the image is used to train CNN models. These images serve as the input of independent networks for the drug and are considered as a protein. These networks are used to extract feature from drug and protein. In the last layer of these networks, features extracted from drug and protein sequences combine with each other. After concatenating, the number of features will raise. To reduce the number of features and to extract more efficient features, a Variational Autoencoder is used. In the last step, this combined feature vector is used to train machine learning models. The proposed method has been tested and evaluated on 6 standard data sets. The results of the experiments show that the proposed method has an acceptable performance compared to other methods in this data set.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
感动的翎发布了新的文献求助20
刚刚
无奈凉面发布了新的文献求助10
1秒前
大模型应助郑zz采纳,获得10
3秒前
无辜的垣发布了新的文献求助10
3秒前
伤逝完成签到 ,获得积分10
4秒前
4秒前
5秒前
orixero应助pihriyyy采纳,获得10
6秒前
HUM完成签到,获得积分20
6秒前
7秒前
共享精神应助MaoSen采纳,获得10
8秒前
栀初完成签到,获得积分10
8秒前
爆米花应助格格巫采纳,获得10
8秒前
wanci应助格格巫采纳,获得10
9秒前
桐桐应助ling采纳,获得10
9秒前
ldgsd发布了新的文献求助10
9秒前
Fxhy完成签到,获得积分10
10秒前
HUM发布了新的文献求助10
10秒前
InfiniteLulu完成签到,获得积分10
10秒前
Lighters完成签到 ,获得积分10
12秒前
xxvvxx发布了新的文献求助10
12秒前
同志同志完成签到,获得积分10
12秒前
16秒前
小点点完成签到,获得积分10
17秒前
17秒前
沉默的盼夏完成签到,获得积分10
19秒前
20秒前
yuzhi完成签到,获得积分10
20秒前
彭于晏应助想飞的猪采纳,获得10
21秒前
格格巫发布了新的文献求助10
22秒前
23秒前
搜集达人应助无辜的垣采纳,获得10
23秒前
Hello应助哆啦的空间站采纳,获得10
23秒前
无情的瑾瑜完成签到,获得积分10
24秒前
24秒前
Dolbar发布了新的文献求助10
25秒前
mmm完成签到,获得积分10
28秒前
ling发布了新的文献求助10
29秒前
29秒前
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5296623
求助须知:如何正确求助?哪些是违规求助? 4445778
关于积分的说明 13837294
捐赠科研通 4330749
什么是DOI,文献DOI怎么找? 2377237
邀请新用户注册赠送积分活动 1372556
关于科研通互助平台的介绍 1337990