Multi source deep learning method for drug-protein interaction prediction using k-mers and chaos game representation

混沌(操作系统) 代表(政治) 计算机科学 人工智能 机器学习 模式识别(心理学) 政治学 计算机安全 政治 法学
作者
Hengame Abbasi Mesrabadi,Karim Faez,Jamshid Pirgazi
出处
期刊:Chemometrics and Intelligent Laboratory Systems [Elsevier BV]
卷期号:246: 105065-105065
标识
DOI:10.1016/j.chemolab.2024.105065
摘要

Identification of drug-protein interactions plays an important role in drug discovery. Development of new calculation methods, which have high accuracy solve the problems related to the previous methods, which were expensive and time-consuming. In this article, a new model for drug-protein interactions, and a new mapping approach to represent drug-protein sequences are proposed. The proposed model consists of four parts: drug and protein descriptor section, Drug CNN and Protein CNN sections, Encoder section and classification section. In this method, first the data is prepared. At this stage, the totals are equal to each other. Then in the next step using the k-mers method and Chaos Game, the sequence of drug and protein becomes an image. In the next step, the image is used to train CNN models. These images serve as the input of independent networks for the drug and are considered as a protein. These networks are used to extract feature from drug and protein. In the last layer of these networks, features extracted from drug and protein sequences combine with each other. After concatenating, the number of features will raise. To reduce the number of features and to extract more efficient features, a Variational Autoencoder is used. In the last step, this combined feature vector is used to train machine learning models. The proposed method has been tested and evaluated on 6 standard data sets. The results of the experiments show that the proposed method has an acceptable performance compared to other methods in this data set.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
3秒前
浮游应助杨一一采纳,获得10
3秒前
3秒前
3秒前
简单的仰发布了新的文献求助10
5秒前
852应助自信的高山采纳,获得10
5秒前
6秒前
小二郎应助勤劳滑板采纳,获得10
6秒前
学术虫发布了新的文献求助10
6秒前
jamaisvu完成签到 ,获得积分10
7秒前
7秒前
8秒前
嘟嘟发布了新的文献求助10
8秒前
Wang发布了新的文献求助30
8秒前
绝望的文盲完成签到,获得积分10
8秒前
大模型应助小歘歘采纳,获得10
8秒前
cindy5620发布了新的文献求助10
9秒前
9秒前
wzr发布了新的文献求助10
9秒前
GuanguanYaa发布了新的文献求助10
10秒前
李健的小迷弟应助寻光人采纳,获得10
11秒前
13秒前
13秒前
姜折酒发布了新的文献求助10
13秒前
13秒前
简单的仰完成签到,获得积分20
14秒前
无花果应助学术虫采纳,获得10
14秒前
张11发布了新的文献求助10
14秒前
sandyleung完成签到,获得积分10
14秒前
15秒前
jingyu完成签到,获得积分10
19秒前
CHSLN发布了新的文献求助10
19秒前
Barry发布了新的文献求助10
19秒前
20秒前
在水一方应助雷鸣惊动采纳,获得10
20秒前
长生发布了新的文献求助10
20秒前
21秒前
迷路达完成签到,获得积分10
21秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5132185
求助须知:如何正确求助?哪些是违规求助? 4333666
关于积分的说明 13501674
捐赠科研通 4170698
什么是DOI,文献DOI怎么找? 2286593
邀请新用户注册赠送积分活动 1287479
关于科研通互助平台的介绍 1228414