已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

RAKCR: Reviews sentiment-aware based knowledge graph convolutional networks for Personalized Recommendation

计算机科学 知识图 图形 情报检索 卷积神经网络 情绪分析 人工智能 数据科学 理论计算机科学
作者
Yachao Cui,Hongli Yu,Xiaoxu Guo,Han Cao,Lei Wang
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:248: 123403-123403 被引量:26
标识
DOI:10.1016/j.eswa.2024.123403
摘要

The recommendation algorithm is an important means to alleviate the information explosion in the era of big data. There has been a great deal of research into the use of knowledge graphs as auxiliary information in recommender systems, which can be used to alleviate data sparsity and cold start problems. However, most knowledge graph-based recommendation methods only use rating data to capture the user's potential interest, and the rating is only a comprehensive evaluation of the item by the user, which cannot intuitively and accurately express the user's personalized preference. In addition, existing recommendation strategies that blend ratings and reviews cannot simultaneously model the aspect fine-grained sentiment preferences of users in reviews as well as the personalized characteristics of items from the user's perspective. To this end, in this paper, we propose Reviews Sentiment-Aware Knowledge Graph Convolutional Neural Network (RAKCR), a generic review and knowledge graph-based framework that provides better recommendations by fully mining the fine-grained personalization features in user reviews. In contrast to existing correlation recommendation methods, we designed a new reviews sentiment perception feature and knowledge graph alignment module to characterize user preferences for specific features of items in the knowledge graph. To better represent the personalized feature distribution of users and items, we use the proposed RAKCR to aggregate sentiment relationship weight-aware neighborhood information in the knowledge graph to capture personalized feature representations of both users and items, and to better learn user and item embeddings for more accurate personalized recommendations. Experimental results demonstrate that the proposed RAKCR model outperforms the benchmark model significantly in click-through rate prediction for recommendation scenarios. Across the three datasets, Movielens-20 m, Amazon-book, and Yelp, the AUC values show an average improvement of 6.4%, 6.0%, and 3.4%, respectively. Additionally, the F1 values exhibit an average improvement of 7.2%, 6.2%, and 4.1%, respectively, when compared to existing state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
后山种仙草完成签到,获得积分10
1秒前
1秒前
怡然的冰露完成签到,获得积分10
2秒前
zzz完成签到,获得积分10
2秒前
谢谢谢发布了新的文献求助10
2秒前
4秒前
4秒前
鲤鱼初柳完成签到 ,获得积分10
5秒前
Delight完成签到 ,获得积分0
8秒前
科研通AI6应助怡然的冰露采纳,获得30
8秒前
衾空发布了新的文献求助10
9秒前
WW完成签到,获得积分20
10秒前
CodeCraft应助木子采纳,获得10
11秒前
11秒前
852应助John采纳,获得10
12秒前
13秒前
14秒前
我是老大应助Breeze采纳,获得10
15秒前
科目三应助优美紫槐采纳,获得10
15秒前
Hello应助hbWang采纳,获得10
16秒前
yaoli0823发布了新的文献求助30
16秒前
16秒前
16秒前
17秒前
17秒前
DDDSK发布了新的文献求助30
18秒前
18秒前
科研通AI6应助科研小魏采纳,获得10
20秒前
John完成签到,获得积分10
20秒前
20秒前
Lee发布了新的文献求助10
21秒前
22秒前
木子发布了新的文献求助10
22秒前
左手写情发布了新的文献求助30
23秒前
ceeray23应助科研通管家采纳,获得10
23秒前
华仔应助科研通管家采纳,获得10
23秒前
CipherSage应助科研通管家采纳,获得10
23秒前
Mic应助科研通管家采纳,获得10
23秒前
enjoy发布了新的文献求助10
23秒前
852应助科研通管家采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650215
求助须知:如何正确求助?哪些是违规求助? 4780069
关于积分的说明 15051513
捐赠科研通 4809083
什么是DOI,文献DOI怎么找? 2572018
邀请新用户注册赠送积分活动 1528258
关于科研通互助平台的介绍 1487075