Squeeze and Excitation Attention Meets Modified EfficientNetB0 Architecture: Multi-Class Brain Tumor Classification Using Explainable Artifical Intelligence

班级(哲学) 计算机科学 人工智能 建筑 模式识别(心理学) 机器学习 艺术 视觉艺术
作者
Md. Musab Us Saber Shakin,Farzana Akter,S. M. Mahedy Hasan,Md. Rakib Hossain,Azmain Yakin Srizon,Rifatul Islam,Sheikh Shraboni Akter
标识
DOI:10.1109/iccit60459.2023.10441407
摘要

Brain tumors, spanning a spectrum from benign to malignant, pose a formidable medical challenge due to their potential to disrupt critical brain functions. Traditional diagnostic methods, relying on human interpretation of MRI images, frequently suffer from accuracy and efficiency limitations. Despite promising research, it encounters challenges in feature extraction and model interpretability. In this study, an innovative approach to brain tumor classification was introduced. A modified variant of the EfficientNetB0 architecture was leveraged, and reinforced by a Squeeze and Excitation Attention (SEA) block. The upper layers of the original EfficientNetB0 architecture were fine-tuned and customized to suit the specific investigation. Subsequently, the tailored EfficientNetB0 was employed to extract features and seamlessly integrate the SEA block. This integration amplified the emphasis on pertinent features while dampening irrelevant ones. The approach underwent a comprehensive empirical assessment on a combined dataset, yielding a remarkable accuracy rate of 99.70%, surpassing other state-of-the-art methods. Moreover, Grad-CAM visualization was employed to precisely pinpoint areas within the images that exerted a substantial influence on the model's predictions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qizhixu发布了新的文献求助10
1秒前
1秒前
汉堡包应助科研通管家采纳,获得30
2秒前
Jasper应助科研通管家采纳,获得10
2秒前
Lucas应助科研通管家采纳,获得10
2秒前
2秒前
田様应助科研通管家采纳,获得10
2秒前
传奇3应助科研通管家采纳,获得10
2秒前
华仔应助科研通管家采纳,获得10
2秒前
中科路2020完成签到,获得积分10
3秒前
3秒前
Ava应助科研通管家采纳,获得10
3秒前
香蕉觅云应助科研通管家采纳,获得10
3秒前
所所应助科研通管家采纳,获得10
3秒前
恤寒应助科研通管家采纳,获得10
3秒前
wy.he应助科研通管家采纳,获得10
3秒前
3秒前
丘比特应助科研通管家采纳,获得10
3秒前
Ava应助科研通管家采纳,获得10
3秒前
Akim应助科研通管家采纳,获得10
3秒前
李健应助科研通管家采纳,获得10
4秒前
waldoe应助科研通管家采纳,获得10
4秒前
英姑应助科研通管家采纳,获得30
4秒前
CodeCraft应助科研通管家采纳,获得10
4秒前
脑洞疼应助科研通管家采纳,获得10
4秒前
buggipop完成签到,获得积分20
4秒前
乐乐应助科研通管家采纳,获得10
4秒前
完美世界应助科研通管家采纳,获得10
4秒前
4秒前
汉堡包应助awei采纳,获得10
5秒前
jjjakdie发布了新的文献求助30
5秒前
dandan完成签到,获得积分10
5秒前
大岩石发布了新的文献求助10
5秒前
SciGPT应助激动的青寒采纳,获得10
6秒前
xixi发布了新的文献求助10
6秒前
李健的小迷弟应助熊98采纳,获得10
7秒前
充电宝应助Lily采纳,获得10
7秒前
zack完成签到,获得积分10
7秒前
2131s完成签到,获得积分20
8秒前
远道完成签到,获得积分10
8秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
山海经图录 李云中版 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3327389
求助须知:如何正确求助?哪些是违规求助? 2957705
关于积分的说明 8586874
捐赠科研通 2635801
什么是DOI,文献DOI怎么找? 1442588
科研通“疑难数据库(出版商)”最低求助积分说明 668315
邀请新用户注册赠送积分活动 655382