免疫疗法
癌症研究
胰腺癌
生物
肿瘤微环境
癌症
肿瘤进展
癌变
免疫系统
免疫学
遗传学
作者
Daowei Yang,Xinlei Sun,Rohan Moniruzzaman,Hua Wang,Citu Citu,Zhongming Zhao,Ignacio I. Wistuba,Huamin Wang,Anirban Maitra,Yang Chen
标识
DOI:10.1053/j.gastro.2024.03.007
摘要
Abstract
BACKGROUND & AIMS
Pancreatic ductal adenocarcinoma (PDAC) has a desmoplastic tumor stroma and immunosuppressive microenvironment. Galectin-3 (GAL3) is enriched in PDAC, highly expressed by cancer cells and myeloid cells. However, the functional roles of GAL3 in the PDAC microenvironment remain elusive. METHODS
We generated a novel transgenic mouse model (KPPC;Lgals3-/-) that allows the genetic depletion of GAL3 from both cancer cells and myeloid cells in spontaneous PDAC formation. Single-cell RNA-sequencing analysis was used to identify the alterations in the tumor microenvironment upon GAL3 depletion. We investigated both the cancer cell-intrinsic function and immunosuppressive function of GAL3. We also evaluated the therapeutic efficacy of GAL3 inhibition in combination with immunotherapy. RESULTS
Genetic deletion of GAL3 significantly inhibited the spontaneous pancreatic tumor progression and prolonged the survival of KPPC;Lgals3-/- mice. Single-cell analysis revealed that genetic deletion of GAL3 altered the phenotypes of immune cells, cancer cells, and other cell populations. GAL3 deletion significantly enriched the anti-tumor myeloid cell subpopulation with high major histocompatibility complex class II (MHCII) expression. We also identified that GAL3 depletion resulted in CXCL12 upregulation, which could act as a potential compensating mechanism upon GAL3 deficiency. Combined inhibition of CXCL12-CXCR4 axis and GAL3 enhanced the efficacy of anti-PD-1 immunotherapy, leading to significantly inhibited PDAC progression. In addition, deletion of GAL3 also inhibited the basal/mesenchymal-like phenotype of pancreatic cancer cells. CONCLUSIONS
GAL3 promotes PDAC progression and immunosuppression via both cancer cell-intrinsic and immune-related mechanisms. Combined treatment targeting GAL3, CXCL12-CXCR4 axis, and PD-1 represents a novel therapeutic strategy for PDAC.
科研通智能强力驱动
Strongly Powered by AbleSci AI