Unlocking Four‐electron Conversion in Tellurium Cathodes for Advanced Magnesium‐based Dual‐ion Batteries

电解质 阴极 钝化 离子 阳极 化学 无机化学 氯化物 离解(化学) 化学工程 材料科学 纳米技术 物理化学 有机化学 冶金 电极 工程类 图层(电子)
作者
Ahiud Morag,Xingyuan Chu,Maciej Marczewski,Jonas Kunigkeit,Christof Neumann,Davood Sabaghi,Grażyna Zofia Żukowska,Jingwei Du,Xiaodong Li,Andrey Turchanin,Eike Brunner,Xinliang Feng,Minghao Yu
出处
期刊:Angewandte Chemie [Wiley]
卷期号:63 (19): e202401818-e202401818 被引量:19
标识
DOI:10.1002/anie.202401818
摘要

Abstract Magnesium (Mg) batteries hold promise as a large‐scale energy storage solution, but their progress has been hindered by the lack of high‐performance cathodes. Here, we address this challenge by unlocking the reversible four‐electron Te 0 /Te 4+ conversion in elemental Te, enabling the demonstration of superior Mg//Te dual‐ion batteries. Specifically, the classic magnesium aluminum chloride complex (MACC) electrolyte is tailored by introducing Mg bis(trifluoromethanesulfonyl)imide (Mg(TFSI) 2 ), which initiates the Te 0 /Te 4+ conversion with two distinct charge‐storage steps. Te cathode undergoes Te/TeCl 4 conversion involving Cl − as charge carriers, during which a tellurium subchloride phase is presented as an intermediate. Significantly, the Te cathode achieves a high specific capacity of 543 mAh g Te −1 and an outstanding energy density of 850 Wh kg Te −1 , outperforming most of the previously reported cathodes. Our electrolyte analysis indicates that the addition of Mg(TFSI) 2 reduces the overall ion‐molecule interaction and mitigates the strength of ion‐solvent aggregation within the MACC electrolyte, which implies the facilized Cl − dissociation from the electrolyte. Besides, Mg(TFSI) 2 is verified as an essential buffer to mitigate the corrosion and passivation of Mg anodes caused by the consumption of the electrolyte MgCl 2 in Mg//Te dual‐ion cells. These findings provide crucial insights into the development of advanced Mg‐based dual‐ion batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助hubery采纳,获得10
1秒前
handsome发布了新的文献求助10
1秒前
爱意发布了新的文献求助10
2秒前
2秒前
威武白桃完成签到,获得积分10
3秒前
充电宝应助超超采纳,获得10
3秒前
4秒前
小明应助彩色的若南采纳,获得10
5秒前
李健的小迷弟应助岳元满采纳,获得10
6秒前
6秒前
lifang发布了新的文献求助10
7秒前
7秒前
浮游应助xhz采纳,获得10
7秒前
111发布了新的文献求助10
8秒前
xc完成签到,获得积分20
8秒前
9秒前
cheng完成签到,获得积分10
10秒前
10秒前
11秒前
一投就中发布了新的文献求助10
12秒前
刘柳发布了新的文献求助10
12秒前
顺利的蛋挞关注了科研通微信公众号
13秒前
Juvianne发布了新的文献求助10
14秒前
14秒前
14秒前
无辜的丹雪应助惠1采纳,获得30
15秒前
15秒前
CipherSage应助111采纳,获得10
16秒前
Owen应助111采纳,获得10
16秒前
甜蜜寄文发布了新的文献求助10
16秒前
16秒前
guangshuang发布了新的文献求助10
17秒前
慕青应助xc采纳,获得30
17秒前
韩修杰发布了新的文献求助10
18秒前
18秒前
lyl发布了新的文献求助10
19秒前
19秒前
coin完成签到,获得积分10
19秒前
呆一起完成签到,获得积分10
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642103
求助须知:如何正确求助?哪些是违规求助? 4758150
关于积分的说明 15016411
捐赠科研通 4800600
什么是DOI,文献DOI怎么找? 2566140
邀请新用户注册赠送积分活动 1524244
关于科研通互助平台的介绍 1483901