亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Cross-Modal Learning via Adversarial Loss and Covariate Shift for Enhanced Liver Segmentation

协变量 对抗制 情态动词 分割 计算机科学 人工智能 机器学习 化学 高分子化学
作者
Savaş Özkan,M. Alper Selver,Bora Baydar,Ali Emre Kavur,Cemre Candemir,Gözde Bozdağı Akar
出处
期刊:IEEE transactions on emerging topics in computational intelligence [Institute of Electrical and Electronics Engineers]
卷期号:8 (4): 2723-2735 被引量:1
标识
DOI:10.1109/tetci.2024.3369868
摘要

Despite the widespread use of deep learning methods for semantic segmentation from single imaging modalities, their performance for exploiting multi-domain data still needs to improve. However, the decision-making process in radiology is often guided by data from multiple sources, such as pre-operative evaluation of living donated liver transplantation donors. In such cases, cross-modality performances of deep models become more important. Unfortunately, the domain-dependency of existing techniques limits their clinical acceptability, primarily confining their performance to individual domains. This issue is further formulated as a multi-source domain adaptation problem, which is an emerging field mainly due to the diverse pattern characteristics exhibited from cross-modality data. This paper presents a novel method that can learn robust representations from unpaired cross-modal (CT-MR) data by encapsulating distinct and shared patterns from multiple modalities. In our solution, the covariate shift property is maintained with structural modifications in our architecture. Also, an adversarial loss is adopted to boost the representation capacity. As a result, sparse and rich representations are obtained. Another superiority of our model is that no information about modalities is needed at the training or inference phase. Tests on unpaired CT and MR liver data obtained from the cross-modality task of the CHAOS grand challenge demonstrate that our approach achieves state-of-the-art results with a large margin in both individual metrics and overall scores.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mumumuzzz完成签到,获得积分10
5秒前
lcwait完成签到,获得积分10
5秒前
Wmmmmm发布了新的文献求助10
20秒前
Wmmmmm完成签到,获得积分10
30秒前
白华苍松发布了新的文献求助20
32秒前
上官若男应助读书的时候采纳,获得30
33秒前
Sunsets完成签到 ,获得积分10
38秒前
善学以致用应助白华苍松采纳,获得10
41秒前
量子星尘发布了新的文献求助10
48秒前
科研小和尚完成签到,获得积分10
50秒前
小红发布了新的文献求助10
1分钟前
小红完成签到,获得积分10
1分钟前
丘比特应助读书的时候采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
JamesPei应助蓝色牛马采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
sunialnd应助科研通管家采纳,获得150
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
1分钟前
蓝色牛马发布了新的文献求助10
1分钟前
万能图书馆应助蓝色牛马采纳,获得10
2分钟前
隐形不凡完成签到,获得积分10
2分钟前
2分钟前
李桂芳完成签到,获得积分10
2分钟前
ChenGY完成签到,获得积分10
2分钟前
3分钟前
HANZHANG应助胡鸽采纳,获得10
3分钟前
af完成签到,获得积分10
3分钟前
Ava应助读书的时候采纳,获得10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
大模型应助科研通管家采纳,获得10
3分钟前
科研通AI6.1应助HANZHANG采纳,获得30
3分钟前
Everything完成签到,获得积分10
3分钟前
4分钟前
Wang完成签到 ,获得积分20
4分钟前
上官若男应助读书的时候采纳,获得30
4分钟前
量子星尘发布了新的文献求助10
4分钟前
星辰大海应助读书的时候采纳,获得10
4分钟前
坦率的文龙完成签到,获得积分10
4分钟前
白华苍松完成签到,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
Ägyptische Geschichte der 21.–30. Dynastie 1520
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5739664
求助须知:如何正确求助?哪些是违规求助? 5388233
关于积分的说明 15339861
捐赠科研通 4882052
什么是DOI,文献DOI怎么找? 2624113
邀请新用户注册赠送积分活动 1572832
关于科研通互助平台的介绍 1529616