亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Cross-Modal Learning via Adversarial Loss and Covariate Shift for Enhanced Liver Segmentation

协变量 对抗制 情态动词 分割 计算机科学 人工智能 机器学习 化学 高分子化学
作者
Savaş Özkan,M. Alper Selver,Bora Baydar,Ali Emre Kavur,Cemre Candemir,Gözde Bozdağı Akar
出处
期刊:IEEE transactions on emerging topics in computational intelligence [Institute of Electrical and Electronics Engineers]
卷期号:8 (4): 2723-2735 被引量:1
标识
DOI:10.1109/tetci.2024.3369868
摘要

Despite the widespread use of deep learning methods for semantic segmentation from single imaging modalities, their performance for exploiting multi-domain data still needs to improve. However, the decision-making process in radiology is often guided by data from multiple sources, such as pre-operative evaluation of living donated liver transplantation donors. In such cases, cross-modality performances of deep models become more important. Unfortunately, the domain-dependency of existing techniques limits their clinical acceptability, primarily confining their performance to individual domains. This issue is further formulated as a multi-source domain adaptation problem, which is an emerging field mainly due to the diverse pattern characteristics exhibited from cross-modality data. This paper presents a novel method that can learn robust representations from unpaired cross-modal (CT-MR) data by encapsulating distinct and shared patterns from multiple modalities. In our solution, the covariate shift property is maintained with structural modifications in our architecture. Also, an adversarial loss is adopted to boost the representation capacity. As a result, sparse and rich representations are obtained. Another superiority of our model is that no information about modalities is needed at the training or inference phase. Tests on unpaired CT and MR liver data obtained from the cross-modality task of the CHAOS grand challenge demonstrate that our approach achieves state-of-the-art results with a large margin in both individual metrics and overall scores.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
sun给sun的求助进行了留言
16秒前
30秒前
George发布了新的文献求助10
36秒前
酷炫灰狼发布了新的文献求助10
44秒前
vitamin完成签到 ,获得积分10
49秒前
50秒前
科研通AI2S应助科研通管家采纳,获得10
56秒前
NattyPoe应助科研通管家采纳,获得10
56秒前
科研通AI2S应助科研通管家采纳,获得10
56秒前
56秒前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
充电宝应助酷炫灰狼采纳,获得10
1分钟前
李爱国应助可靠的寒风采纳,获得10
1分钟前
TT完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
zsmj23完成签到 ,获得积分0
1分钟前
sun发布了新的文献求助10
1分钟前
林一发布了新的文献求助10
1分钟前
Hello应助雾里采纳,获得10
1分钟前
2分钟前
小二郎应助鳄鱼不做饿梦采纳,获得10
2分钟前
Criminology34应助林一采纳,获得10
2分钟前
2分钟前
酷炫灰狼发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
蜜汁章鱼丸完成签到 ,获得积分10
3分钟前
赘婿应助酷炫灰狼采纳,获得10
3分钟前
3分钟前
酷炫灰狼发布了新的文献求助10
3分钟前
4分钟前
4分钟前
Jasper应助酷炫灰狼采纳,获得10
4分钟前
4分钟前
小卢卢快闭嘴完成签到,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664448
求助须知:如何正确求助?哪些是违规求助? 4861758
关于积分的说明 15107715
捐赠科研通 4823032
什么是DOI,文献DOI怎么找? 2581870
邀请新用户注册赠送积分活动 1536034
关于科研通互助平台的介绍 1494399