Cross-Modal Learning via Adversarial Loss and Covariate Shift for Enhanced Liver Segmentation

协变量 对抗制 情态动词 分割 计算机科学 人工智能 机器学习 化学 高分子化学
作者
Savaş Özkan,M. Alper Selver,Bora Baydar,Ali Emre Kavur,Cemre Candemir,Gözde Bozdağı Akar
出处
期刊:IEEE transactions on emerging topics in computational intelligence [Institute of Electrical and Electronics Engineers]
卷期号:8 (4): 2723-2735 被引量:1
标识
DOI:10.1109/tetci.2024.3369868
摘要

Despite the widespread use of deep learning methods for semantic segmentation from single imaging modalities, their performance for exploiting multi-domain data still needs to improve. However, the decision-making process in radiology is often guided by data from multiple sources, such as pre-operative evaluation of living donated liver transplantation donors. In such cases, cross-modality performances of deep models become more important. Unfortunately, the domain-dependency of existing techniques limits their clinical acceptability, primarily confining their performance to individual domains. This issue is further formulated as a multi-source domain adaptation problem, which is an emerging field mainly due to the diverse pattern characteristics exhibited from cross-modality data. This paper presents a novel method that can learn robust representations from unpaired cross-modal (CT-MR) data by encapsulating distinct and shared patterns from multiple modalities. In our solution, the covariate shift property is maintained with structural modifications in our architecture. Also, an adversarial loss is adopted to boost the representation capacity. As a result, sparse and rich representations are obtained. Another superiority of our model is that no information about modalities is needed at the training or inference phase. Tests on unpaired CT and MR liver data obtained from the cross-modality task of the CHAOS grand challenge demonstrate that our approach achieves state-of-the-art results with a large margin in both individual metrics and overall scores.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
安逸1发布了新的文献求助10
1秒前
我睡觉的时候不困完成签到 ,获得积分10
2秒前
sys完成签到,获得积分10
2秒前
肖不点完成签到,获得积分10
5秒前
lxh完成签到,获得积分10
5秒前
乐乐应助安逸1采纳,获得10
7秒前
sally完成签到 ,获得积分10
8秒前
sns八丘完成签到,获得积分10
11秒前
老实的吐司完成签到,获得积分10
12秒前
Singularity应助wh雨采纳,获得20
14秒前
李健的小迷弟应助九秋霜采纳,获得10
17秒前
19秒前
19秒前
20秒前
松谦发布了新的文献求助10
20秒前
feezy完成签到,获得积分10
20秒前
可乐发布了新的文献求助10
24秒前
天降发布了新的文献求助10
25秒前
25秒前
wh雨完成签到,获得积分20
25秒前
安逸1发布了新的文献求助10
25秒前
英姑应助郑荻凡采纳,获得10
26秒前
HEIKU应助yy采纳,获得10
27秒前
科研小民工完成签到,获得积分10
30秒前
研友_qZ6Emn完成签到,获得积分0
31秒前
33秒前
37秒前
今后应助安逸1采纳,获得10
37秒前
郑荻凡发布了新的文献求助10
38秒前
39秒前
Meredith应助可乐采纳,获得10
40秒前
40秒前
cxr1010完成签到,获得积分10
41秒前
SCI发布了新的文献求助10
42秒前
九秋霜发布了新的文献求助10
43秒前
Vege完成签到,获得积分10
45秒前
连长发布了新的文献求助10
46秒前
完美世界应助郝宝真采纳,获得10
46秒前
47秒前
九日完成签到,获得积分10
49秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165504
求助须知:如何正确求助?哪些是违规求助? 2816567
关于积分的说明 7913125
捐赠科研通 2476098
什么是DOI,文献DOI怎么找? 1318668
科研通“疑难数据库(出版商)”最低求助积分说明 632179
版权声明 602388