Cross-Modal Learning via Adversarial Loss and Covariate Shift for Enhanced Liver Segmentation

协变量 对抗制 情态动词 分割 计算机科学 人工智能 机器学习 化学 高分子化学
作者
Savaş Özkan,M. Alper Selver,Bora Baydar,Ali Emre Kavur,Cemre Candemir,Gözde Bozdağı Akar
出处
期刊:IEEE transactions on emerging topics in computational intelligence [Institute of Electrical and Electronics Engineers]
卷期号:8 (4): 2723-2735 被引量:1
标识
DOI:10.1109/tetci.2024.3369868
摘要

Despite the widespread use of deep learning methods for semantic segmentation from single imaging modalities, their performance for exploiting multi-domain data still needs to improve. However, the decision-making process in radiology is often guided by data from multiple sources, such as pre-operative evaluation of living donated liver transplantation donors. In such cases, cross-modality performances of deep models become more important. Unfortunately, the domain-dependency of existing techniques limits their clinical acceptability, primarily confining their performance to individual domains. This issue is further formulated as a multi-source domain adaptation problem, which is an emerging field mainly due to the diverse pattern characteristics exhibited from cross-modality data. This paper presents a novel method that can learn robust representations from unpaired cross-modal (CT-MR) data by encapsulating distinct and shared patterns from multiple modalities. In our solution, the covariate shift property is maintained with structural modifications in our architecture. Also, an adversarial loss is adopted to boost the representation capacity. As a result, sparse and rich representations are obtained. Another superiority of our model is that no information about modalities is needed at the training or inference phase. Tests on unpaired CT and MR liver data obtained from the cross-modality task of the CHAOS grand challenge demonstrate that our approach achieves state-of-the-art results with a large margin in both individual metrics and overall scores.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
震动的尔曼完成签到,获得积分10
3秒前
ss完成签到,获得积分20
4秒前
阳光的水壶完成签到,获得积分10
4秒前
木野狐完成签到,获得积分10
4秒前
华仔应助辛勤的初晴采纳,获得10
4秒前
4秒前
5秒前
5秒前
柴火烧叽完成签到,获得积分10
6秒前
田様应助小罗飞飞飞采纳,获得10
6秒前
佛系完成签到 ,获得积分10
6秒前
6秒前
丫丫完成签到,获得积分10
6秒前
bkagyin应助凤凰山采纳,获得10
7秒前
星星发布了新的文献求助10
8秒前
9秒前
义气大象完成签到,获得积分10
9秒前
大方嵩发布了新的文献求助10
9秒前
Cacilhas完成签到 ,获得积分10
9秒前
0000发布了新的文献求助30
9秒前
豆子发布了新的文献求助10
9秒前
Jenny应助木野狐采纳,获得10
9秒前
Khr1stINK发布了新的文献求助10
10秒前
牛牛完成签到,获得积分10
11秒前
11秒前
11秒前
li完成签到,获得积分10
11秒前
无花果应助发嗲的忆寒采纳,获得30
11秒前
xiaotudou95应助excellent_shit采纳,获得10
12秒前
btcat完成签到,获得积分10
12秒前
小蘑菇应助搬砖道人采纳,获得10
13秒前
思源应助校长采纳,获得10
13秒前
鸣隐完成签到,获得积分10
13秒前
14秒前
14秒前
14秒前
16秒前
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794