Cross-Modal Learning via Adversarial Loss and Covariate Shift for Enhanced Liver Segmentation

协变量 对抗制 情态动词 分割 计算机科学 人工智能 机器学习 化学 高分子化学
作者
Savaş Özkan,M. Alper Selver,Bora Baydar,Ali Emre Kavur,Cemre Candemir,Gözde Bozdağı Akar
出处
期刊:IEEE transactions on emerging topics in computational intelligence [Institute of Electrical and Electronics Engineers]
卷期号:8 (4): 2723-2735 被引量:1
标识
DOI:10.1109/tetci.2024.3369868
摘要

Despite the widespread use of deep learning methods for semantic segmentation from single imaging modalities, their performance for exploiting multi-domain data still needs to improve. However, the decision-making process in radiology is often guided by data from multiple sources, such as pre-operative evaluation of living donated liver transplantation donors. In such cases, cross-modality performances of deep models become more important. Unfortunately, the domain-dependency of existing techniques limits their clinical acceptability, primarily confining their performance to individual domains. This issue is further formulated as a multi-source domain adaptation problem, which is an emerging field mainly due to the diverse pattern characteristics exhibited from cross-modality data. This paper presents a novel method that can learn robust representations from unpaired cross-modal (CT-MR) data by encapsulating distinct and shared patterns from multiple modalities. In our solution, the covariate shift property is maintained with structural modifications in our architecture. Also, an adversarial loss is adopted to boost the representation capacity. As a result, sparse and rich representations are obtained. Another superiority of our model is that no information about modalities is needed at the training or inference phase. Tests on unpaired CT and MR liver data obtained from the cross-modality task of the CHAOS grand challenge demonstrate that our approach achieves state-of-the-art results with a large margin in both individual metrics and overall scores.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
伯赏思山完成签到,获得积分10
刚刚
2秒前
科研通AI5应助Djnsbj采纳,获得10
3秒前
xsy完成签到 ,获得积分10
4秒前
5秒前
落俗发布了新的文献求助10
5秒前
6秒前
饼藏发布了新的文献求助10
7秒前
木头马尾发布了新的文献求助10
9秒前
KjLumos发布了新的文献求助10
9秒前
岁岁平安发布了新的文献求助10
10秒前
11秒前
11秒前
12秒前
JazzWon完成签到,获得积分10
12秒前
13秒前
桐桐应助聂越采纳,获得10
13秒前
共享精神应助科研通管家采纳,获得10
13秒前
JamesPei应助科研通管家采纳,获得10
13秒前
FashionBoy应助科研通管家采纳,获得10
13秒前
李健应助科研通管家采纳,获得10
13秒前
柯一一应助科研通管家采纳,获得10
13秒前
13秒前
无花果应助科研通管家采纳,获得10
14秒前
Liufgui应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
14秒前
14秒前
常归尘完成签到,获得积分10
14秒前
15秒前
Rondab应助gj2221423采纳,获得10
15秒前
Ava应助张静枝采纳,获得10
16秒前
淡然丹妗发布了新的文献求助10
17秒前
12312发布了新的文献求助30
18秒前
18秒前
LPL完成签到,获得积分10
18秒前
淼鑫完成签到,获得积分10
19秒前
20秒前
joysa发布了新的文献求助10
20秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967699
求助须知:如何正确求助?哪些是违规求助? 3512860
关于积分的说明 11165281
捐赠科研通 3247897
什么是DOI,文献DOI怎么找? 1794067
邀请新用户注册赠送积分活动 874808
科研通“疑难数据库(出版商)”最低求助积分说明 804550