A hybrid evolution strategies-simulated annealing algorithm for job shop scheduling problems

计算机科学 模拟退火 作业车间调度 算法 流水车间调度 数学优化 嵌入式系统 布线(电子设计自动化) 数学
作者
Bilal Khurshid,Shahid Maqsood
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:133: 108016-108016 被引量:1
标识
DOI:10.1016/j.engappai.2024.108016
摘要

Job shop scheduling problems (JSSPs) are intractable combinatorial optimization problems and have been solved by numerous researchers over the last couple of decades, however, their solution still needs improvement. In this paper, a Hybrid Evolution Strategies-Simulated Annealing (HES-SA) algorithm is proposed for minimizing the makespan of JSSPs. The initial solution is randomly generated in the Evolution Strategies (ES) algorithm. Since mutation is the main source of genetic variation, and the performance of the ES algorithm relies on the mutation operator, multi-mutation operators are used in this paper i.e. a random number between 1 and 4 is generated and based on that number, the value used is either swap mutation, insertion mutation, scrambled mutation, or inversion mutation. For reproduction (1 + 9)-ES is used, hence nine offspring are randomly generated from one parent. The ES algorithm often gets trapped in local minima and suffers from premature convergence, hence it is combined with the Simulated Annealing (SA) algorithm, which helps to avoid local minima and increases the local search ability of the Hybrid HES-SA algorithm. In the SA algorithm, an insertion mutation is used and the initial temperature is set at 0.95, which is then gradually reduced for finding good solutions in the neighborhood. The HES-SA algorithm is tested on Fisher, Lawrence, and Yamada benchmark job shop problems and compared with other famous available techniques using the Wilcoxon signed rank test and Friedman test. The computational results show that HES-SA algorithm performs better in terms of makespan values as compared to other famous techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Blank发布了新的文献求助10
3秒前
慕青应助Mortal采纳,获得10
7秒前
7秒前
kin完成签到 ,获得积分10
8秒前
11秒前
科研混子发布了新的文献求助10
12秒前
giucher完成签到,获得积分10
13秒前
13秒前
随波逐流发布了新的文献求助10
14秒前
14秒前
KongLG完成签到 ,获得积分10
14秒前
zhangbcn发布了新的文献求助10
19秒前
20秒前
Mortal发布了新的文献求助10
20秒前
20秒前
21秒前
qnd完成签到,获得积分10
23秒前
科研混子完成签到,获得积分10
23秒前
007完成签到 ,获得积分10
25秒前
Thi发布了新的文献求助10
25秒前
CodeCraft应助随波逐流采纳,获得10
26秒前
健康的绮晴完成签到,获得积分10
26秒前
dd完成签到,获得积分10
26秒前
无花果应助anananand采纳,获得10
26秒前
007关注了科研通微信公众号
28秒前
A9W01U完成签到,获得积分10
31秒前
blawxx完成签到,获得积分10
31秒前
Jasper应助Muggle采纳,获得10
33秒前
33秒前
宁宁壹号完成签到,获得积分10
35秒前
快乐的香菇关注了科研通微信公众号
36秒前
星辰大海应助Thi采纳,获得10
38秒前
39秒前
lhb发布了新的文献求助10
39秒前
叶子发布了新的文献求助10
42秒前
SciGPT应助科研通管家采纳,获得10
44秒前
烟花应助科研通管家采纳,获得10
44秒前
星辰大海应助科研通管家采纳,获得10
44秒前
李爱国应助科研通管家采纳,获得10
44秒前
44秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155790
求助须知:如何正确求助?哪些是违规求助? 2807042
关于积分的说明 7871703
捐赠科研通 2465404
什么是DOI,文献DOI怎么找? 1312221
科研通“疑难数据库(出版商)”最低求助积分说明 629958
版权声明 601905