Sculpting conducting nanopore size and shape throughde novoprotein design

纳米孔 跨膜蛋白 纳米技术 纳米孔测序 木桶(钟表) 材料科学 蛋白质设计 化学 蛋白质结构 DNA DNA测序 生物化学 受体 复合材料
作者
Samuel Berhanu,Sagardip Majumder,Thomas Müntener,James Whitehouse,Carolin Berner,Asim K. Bera,Alex Kang,Binyong Liang,G. Nasir Khan,Banumathi Sankaran,Lukas K. Tamm,David J. Brockwell,Sebastian Hiller,Sheena E. Radford,David Baker,Anastassia A. Vorobieva
标识
DOI:10.1101/2023.12.20.572500
摘要

Abstract Transmembrane β-barrels (TMBs) are widely used for single molecule DNA and RNA sequencing and have considerable potential for a broad range of sensing and sequencing applications. Current engineering approaches for nanopore sensors are limited to naturally occurring channels such as CsgG, which have evolved to carry out functions very different from sensing, and hence provide sub-optimal starting points. In contrast, de novo protein design can in principle create an unlimited number of new nanopores with any desired properties. Here we describe a general approach to the design of transmembrane β-barrel pores with different diameter and pore geometry. NMR and crystallographic characterization shows that the designs are stably folded with structures close to the design models. We report the first examples of de novo designed TMBs with 10, 12 and 14 stranded β-barrels. The designs have distinct conductances that correlate with their pore diameter, ranging from 110 pS (∼0.5 nm pore diameter) to 430 pS (∼1.1 nm pore diameter), and can be converted into sensitive small-molecule sensors with high signal to noise ratio. The capability to generate on demand β-barrel pores of defined geometry opens up fundamentally new opportunities for custom engineering of sequencing and sensing technologies. One sentence summary De novo design enables the generation of stable and quite transmembrane beta-barrel nanopores with tailored sizes, shapes and properties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
江边鸟完成签到 ,获得积分10
刚刚
微笑翠桃完成签到,获得积分20
1秒前
小开心发布了新的文献求助10
1秒前
Eon发布了新的文献求助10
1秒前
姚美阁完成签到 ,获得积分10
2秒前
mufcyang发布了新的文献求助10
3秒前
4秒前
4秒前
Puffkten发布了新的文献求助10
5秒前
与梦随行2011完成签到,获得积分10
5秒前
5秒前
高哈哈哈完成签到,获得积分10
6秒前
yr发布了新的文献求助10
9秒前
10秒前
微笑翠桃发布了新的文献求助10
13秒前
13秒前
马佳音完成签到 ,获得积分10
14秒前
在水一方应助Eon采纳,获得10
14秒前
TB123发布了新的文献求助10
14秒前
16秒前
JHL完成签到 ,获得积分10
16秒前
18秒前
18秒前
黎是叻熠黎完成签到,获得积分10
19秒前
每天必补一科完成签到,获得积分10
19秒前
花生完成签到,获得积分10
20秒前
mufcyang完成签到,获得积分10
20秒前
21秒前
缪缪发布了新的文献求助10
22秒前
22秒前
风清扬发布了新的文献求助10
23秒前
甜美乘云完成签到,获得积分10
24秒前
万能图书馆应助嘿嘿采纳,获得10
24秒前
26秒前
26秒前
xuxin完成签到 ,获得积分10
27秒前
大模型应助温柔柜子采纳,获得10
27秒前
啦啦啦完成签到,获得积分10
27秒前
易点邦发布了新的文献求助10
28秒前
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637867
求助须知:如何正确求助?哪些是违规求助? 4744182
关于积分的说明 15000410
捐赠科研通 4796064
什么是DOI,文献DOI怎么找? 2562285
邀请新用户注册赠送积分活动 1521829
关于科研通互助平台的介绍 1481714