Using Machine Learning (XGBoost) to Predict Outcomes following Infrainguinal Bypass for Peripheral Artery Disease

医学 布里氏评分 接收机工作特性 逻辑回归 溶栓 外科 不利影响 截肢 内科学 机器学习 计算机科学 心肌梗塞
作者
Ben Li,Naomi Eisenberg,Derek Beaton,Douglas S. Lee,Badr Aljabri,Raj Verma,Duminda N. Wijeysundera,Ori D. Rotstein,Charles de Mestral,Muhammad Mamdani,Graham Roche‐Nagle,Mohammed Al‐Omran
出处
期刊:Annals of Surgery [Ovid Technologies (Wolters Kluwer)]
被引量:9
标识
DOI:10.1097/sla.0000000000006181
摘要

Objective: To develop machine learning (ML) algorithms that predict outcomes following infrainguinal bypass. Summary Background Data: Infrainguinal bypass for peripheral artery disease (PAD) carries significant surgical risks; however, outcome prediction tools remain limited. Methods: The Vascular Quality Initiative (VQI) database was used to identify patients who underwent infrainguinal bypass for PAD between 2003-2023. We identified 97 potential predictor variables from the index hospitalization (68 pre-operative [demographic/clinical], 13 intra-operative [procedural], and 16 post-operative [in-hospital course/complications]). The primary outcome was 1-year major adverse limb event (MALE; composite of surgical revision, thrombectomy/thrombolysis, or major amputation) or death. Our data were split into training (70%) and test (30%) sets. Using 10-fold cross-validation, we trained 6 ML models using pre-operative features. The primary model evaluation metric was area under the receiver operating characteristic curve (AUROC). The top-performing algorithm was further trained using intra- and post-operative features. Model robustness was evaluated using calibration plots and Brier scores. Results: Overall, 59,784 patients underwent infrainguinal bypass and 15,942 (26.7%) developed 1-year MALE/death. The best pre-operative prediction model was XGBoost, achieving an AUROC (95% CI) of 0.94 (0.93-0.95). In comparison, logistic regression had an AUROC (95% CI) of 0.61 (0.59-0.63). Our XGBoost model maintained excellent performance at the intra- and post-operative stages, with AUROC’s (95% CI’s) of 0.94 (0.93-0.95) and 0.96 (0.95-0.97), respectively. Calibration plots showed good agreement between predicted and observed event probabilities with Brier scores of 0.08 (pre-operative), 0.07 (intra-operative), and 0.05 (post-operative). Conclusions: ML models can accurately predict outcomes following infrainguinal bypass, outperforming logistic regression.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
oasissmz完成签到,获得积分10
1秒前
jiaojaioo完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
消风散几两重完成签到,获得积分10
2秒前
丘比特应助通~采纳,获得10
2秒前
隐形曼青应助千里采纳,获得10
3秒前
小可发布了新的文献求助10
3秒前
婷123完成签到 ,获得积分10
3秒前
sooya完成签到,获得积分20
3秒前
大个应助俏皮元珊采纳,获得10
3秒前
4秒前
snowdrift发布了新的文献求助10
4秒前
爆米花应助尊敬的钥匙采纳,获得10
4秒前
China完成签到,获得积分10
4秒前
Ll发布了新的文献求助10
4秒前
5秒前
李小胖完成签到,获得积分10
5秒前
刘鹏宇发布了新的文献求助10
6秒前
6秒前
6秒前
SXM发布了新的文献求助10
7秒前
duan完成签到,获得积分20
7秒前
MrCoolWu完成签到,获得积分10
7秒前
星辰大海应助科研通管家采纳,获得10
8秒前
香蕉觅云应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
8秒前
CipherSage应助科研通管家采纳,获得10
8秒前
8秒前
Leif应助科研通管家采纳,获得20
8秒前
ding应助科研通管家采纳,获得20
8秒前
NexusExplorer应助科研通管家采纳,获得10
9秒前
Owen应助科研通管家采纳,获得10
9秒前
上官若男应助科研通管家采纳,获得10
9秒前
prosperp应助科研通管家采纳,获得10
9秒前
zhang完成签到,获得积分10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740