Using Machine Learning (XGBoost) to Predict Outcomes following Infrainguinal Bypass for Peripheral Artery Disease

医学 布里氏评分 接收机工作特性 逻辑回归 溶栓 外科 不利影响 截肢 内科学 机器学习 计算机科学 心肌梗塞
作者
Ben Li,Naomi Eisenberg,Derek Beaton,Douglas S. Lee,Badr Aljabri,Raj Verma,Duminda N. Wijeysundera,Ori D. Rotstein,Charles de Mestral,Muhammad Mamdani,Graham Roche‐Nagle,Mohammed Al‐Omran
出处
期刊:Annals of Surgery [Lippincott Williams & Wilkins]
被引量:13
标识
DOI:10.1097/sla.0000000000006181
摘要

Objective: To develop machine learning (ML) algorithms that predict outcomes following infrainguinal bypass. Summary Background Data: Infrainguinal bypass for peripheral artery disease (PAD) carries significant surgical risks; however, outcome prediction tools remain limited. Methods: The Vascular Quality Initiative (VQI) database was used to identify patients who underwent infrainguinal bypass for PAD between 2003-2023. We identified 97 potential predictor variables from the index hospitalization (68 pre-operative [demographic/clinical], 13 intra-operative [procedural], and 16 post-operative [in-hospital course/complications]). The primary outcome was 1-year major adverse limb event (MALE; composite of surgical revision, thrombectomy/thrombolysis, or major amputation) or death. Our data were split into training (70%) and test (30%) sets. Using 10-fold cross-validation, we trained 6 ML models using pre-operative features. The primary model evaluation metric was area under the receiver operating characteristic curve (AUROC). The top-performing algorithm was further trained using intra- and post-operative features. Model robustness was evaluated using calibration plots and Brier scores. Results: Overall, 59,784 patients underwent infrainguinal bypass and 15,942 (26.7%) developed 1-year MALE/death. The best pre-operative prediction model was XGBoost, achieving an AUROC (95% CI) of 0.94 (0.93-0.95). In comparison, logistic regression had an AUROC (95% CI) of 0.61 (0.59-0.63). Our XGBoost model maintained excellent performance at the intra- and post-operative stages, with AUROC’s (95% CI’s) of 0.94 (0.93-0.95) and 0.96 (0.95-0.97), respectively. Calibration plots showed good agreement between predicted and observed event probabilities with Brier scores of 0.08 (pre-operative), 0.07 (intra-operative), and 0.05 (post-operative). Conclusions: ML models can accurately predict outcomes following infrainguinal bypass, outperforming logistic regression.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
木叶研发布了新的文献求助10
刚刚
1秒前
2秒前
自由的沛山完成签到,获得积分10
3秒前
乐乐应助爱听歌的忆南采纳,获得10
4秒前
852应助落寞砖家采纳,获得10
5秒前
排骨大王发布了新的文献求助10
5秒前
小马甲应助唠叨的宝马采纳,获得10
5秒前
5秒前
Jasper应助橙子采纳,获得10
5秒前
6秒前
7秒前
9秒前
9秒前
唠叨的宝马完成签到,获得积分10
9秒前
9秒前
科研通AI2S应助木叶研采纳,获得10
10秒前
落寞砖家完成签到,获得积分10
11秒前
12秒前
帅气鹭洋发布了新的文献求助10
13秒前
liriyii发布了新的文献求助10
13秒前
13秒前
落寞砖家发布了新的文献求助10
14秒前
17秒前
17秒前
18秒前
19秒前
zzz发布了新的文献求助10
19秒前
呆瓜完成签到,获得积分10
20秒前
20秒前
量子星尘发布了新的文献求助10
21秒前
21秒前
22秒前
卡布达发布了新的文献求助10
22秒前
Iwan发布了新的文献求助10
22秒前
24秒前
落落完成签到,获得积分10
25秒前
一个搞不懂晶体学的小牛马完成签到,获得积分10
25秒前
26秒前
obito驳回了Akim应助
26秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959401
求助须知:如何正确求助?哪些是违规求助? 3505622
关于积分的说明 11124998
捐赠科研通 3237410
什么是DOI,文献DOI怎么找? 1789120
邀请新用户注册赠送积分活动 871577
科研通“疑难数据库(出版商)”最低求助积分说明 802844