Understanding complex interactions between neighborhood environment and personal perception in affecting walking behavior of older adults: A random forest approach combined with human-machine adversarial framework

感知 随机森林 对抗制 机器学习 人工智能 计算机科学 建筑环境 人类行为 人口 心理学 工程类 医学 环境卫生 土木工程 神经科学
作者
Dian Zhu,Dongjing Song,Beiyao Zhu,Jianan Zhao,Yunlong Li,Chenqi Zhang,Di Zhu,Cong Yu,Ting Han
出处
期刊:Cities [Elsevier]
卷期号:146: 104737-104737 被引量:6
标识
DOI:10.1016/j.cities.2023.104737
摘要

The population aging is a growing problem worldwide. Walking is one of the most important ways of self-management of health for older adults, determined by many factors, such as neighborhood environment (NE) and socio-economic attributes. Although the previous studies have typically predicted elderly walking behavior through NE, they are limited by the methodological system and data collection, resulting in low prediction accuracy. To this end, this study incorporates residents' subjective perceptions of the environment and objective neighborhood environmental attributes into the evaluation system, uses human-machine adversarial framework and machine learning methods to predict elderly walking behavior, and assesses the nonlinear effects of each factor. The results show that (1) combining subjective and objective factors, the prediction accuracy of elderly walking behavior has been effectively improved based on human-machine adversarial framework and machine learning methods. (2) The nonlinear and threshold effects of environmental and perceptual factors on the walking time of the elderly were revealed. (3) The neighborhood attributes were incorporated into the walking behavior prediction, and were found to be of comparable importance to the influence of the NE on the behavior of the elderly. These results provide more reliable qualitative and quantitative auxiliary suggestions for planners.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
七月完成签到,获得积分20
2秒前
斯文败类应助fly采纳,获得10
2秒前
Lvhao应助郭郭采纳,获得10
6秒前
7秒前
搞怪从菡完成签到,获得积分10
8秒前
风中的棒棒糖完成签到,获得积分10
8秒前
April完成签到,获得积分0
9秒前
好好好1234完成签到,获得积分10
9秒前
11秒前
crane发布了新的文献求助10
12秒前
春天在这李完成签到 ,获得积分10
15秒前
温暖幻桃发布了新的文献求助10
15秒前
宋博完成签到,获得积分10
15秒前
VPN不好用发布了新的文献求助10
19秒前
徐婷完成签到 ,获得积分10
21秒前
zsyf完成签到,获得积分10
21秒前
海潮发布了新的文献求助10
21秒前
笑点低的元枫完成签到 ,获得积分10
22秒前
24秒前
Owen应助renovel采纳,获得10
25秒前
26秒前
27秒前
慧慧发布了新的文献求助30
27秒前
Vin完成签到 ,获得积分10
31秒前
31秒前
白小白发布了新的文献求助10
31秒前
32秒前
34秒前
36秒前
Gergeo应助小周小周采纳,获得50
37秒前
39秒前
fly发布了新的文献求助10
39秒前
40秒前
Aurora关注了科研通微信公众号
40秒前
旺旺完成签到 ,获得积分10
41秒前
iuyol发布了新的文献求助10
41秒前
幸福雪青完成签到,获得积分10
42秒前
42秒前
精灵夜雨应助白小白采纳,获得10
44秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157464
求助须知:如何正确求助?哪些是违规求助? 2808880
关于积分的说明 7878772
捐赠科研通 2467260
什么是DOI,文献DOI怎么找? 1313299
科研通“疑难数据库(出版商)”最低求助积分说明 630393
版权声明 601919