LAYN: Lightweight Multi-Scale Attention YOLOv8 Network for Small Object Detection

计算机科学 目标检测 比例(比率) 人工智能 模式识别(心理学) 地图学 地理
作者
Songzhe Ma,Huimin Lu,Jie Liu,Yungang Zhu,Pengcheng Sang
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 29294-29307 被引量:10
标识
DOI:10.1109/access.2024.3368848
摘要

Currently, with the widespread application of embedded technology and the continuous improvement of computational power in mobile terminals, the efficient deployment of algorithms on embedded devices, while maintaining high accuracy and minimizing model size, has become a research hotspot. This paper addresses the challenges of deploying the YOLOv8 algorithm on embedded devices and proposes a novel lightweight object detection algorithm focusing on small object detection. We optimize the model through two key strategies, aiming to achieve lightweight deployment and improve the accuracy of small object detection. Firstly, GhostNet is introduced as the backbone network for YOLOv8 in order to achieve lightweight deployment. By using some cost effective operations to generate redundant feature maps, we not only reduce the number of model parameters while ensuring better detection results, but also improve the speed of the model. Secondly, a new multi-scale attention module is designed to enhance the network's acquisition of crucial information for small targets, which includes a multi-scale fusion attention mechanism and the Soft-NMS algorithm. The multi-scale fusion attention mechanism captures key features of discriminative small targets in the feature map tensor from both spatial and channel dimensions, suppressing non-key information, reducing the impact of complex and unimportant information in the image, enhancing the network model's learning ability for important features of small targets. The Soft-NMS method improves accuracy by significantly reduces false positives in the detection results. To validate the performance of our proposed method, we conducted validation experiments on the PASCAL VOC dataset and evaluated the model's generalization ability on the MS COCO dataset. The experiments results demonstrate that our model achieves a significant improvement in small object detection, with a 5.41% increase in detection accuracy compared to the existing YOLOv8. Meanwhile, FLOPs are reduced by 49.62%, and the number of model parameters is reduced by 48.66%. These results fully confirm the effectiveness of our innovative method in achieving both lightweight deployment and significant efficacy in small object detection tasks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小何发布了新的文献求助10
1秒前
13est_J发布了新的文献求助10
1秒前
1秒前
sunshine发布了新的文献求助10
3秒前
嗨呀发布了新的文献求助10
3秒前
4秒前
optics1992发布了新的文献求助10
4秒前
独特的兰发布了新的文献求助10
4秒前
冷静烤鸡完成签到,获得积分10
5秒前
羊羔蓉发布了新的文献求助10
6秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
13est_J完成签到,获得积分10
7秒前
大脑停工完成签到,获得积分10
8秒前
xixi发布了新的文献求助20
8秒前
量子星尘发布了新的文献求助10
8秒前
哇哇哇哇发布了新的文献求助30
8秒前
张晨伟发布了新的文献求助10
9秒前
Morssax完成签到,获得积分10
10秒前
活泼的雪枫完成签到,获得积分10
10秒前
10秒前
cambridge完成签到,获得积分10
10秒前
11秒前
深情安青应助独特的兰采纳,获得10
11秒前
12秒前
13秒前
13秒前
14秒前
14秒前
CodeCraft应助艾原采纳,获得10
14秒前
冷静烤鸡发布了新的文献求助10
14秒前
啦啦啦发布了新的文献求助10
16秒前
大个应助健壮问兰采纳,获得10
17秒前
123完成签到,获得积分10
18秒前
年年年年发布了新的文献求助10
18秒前
18秒前
WZ发布了新的文献求助10
19秒前
FF关注了科研通微信公众号
19秒前
BowieHuang应助乐观的鞋垫采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
the Oxford Guide to the Bantu Languages 3000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5762565
求助须知:如何正确求助?哪些是违规求助? 5535908
关于积分的说明 15403209
捐赠科研通 4898713
什么是DOI,文献DOI怎么找? 2634982
邀请新用户注册赠送积分活动 1583194
关于科研通互助平台的介绍 1538303