LAYN: Lightweight Multi-Scale Attention YOLOv8 Network for Small Object Detection

计算机科学 目标检测 比例(比率) 人工智能 模式识别(心理学) 地图学 地理
作者
Songzhe Ma,Huimin Lu,Jie Liu,Yungang Zhu,Pengcheng Sang
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 29294-29307 被引量:10
标识
DOI:10.1109/access.2024.3368848
摘要

Currently, with the widespread application of embedded technology and the continuous improvement of computational power in mobile terminals, the efficient deployment of algorithms on embedded devices, while maintaining high accuracy and minimizing model size, has become a research hotspot. This paper addresses the challenges of deploying the YOLOv8 algorithm on embedded devices and proposes a novel lightweight object detection algorithm focusing on small object detection. We optimize the model through two key strategies, aiming to achieve lightweight deployment and improve the accuracy of small object detection. Firstly, GhostNet is introduced as the backbone network for YOLOv8 in order to achieve lightweight deployment. By using some cost effective operations to generate redundant feature maps, we not only reduce the number of model parameters while ensuring better detection results, but also improve the speed of the model. Secondly, a new multi-scale attention module is designed to enhance the network's acquisition of crucial information for small targets, which includes a multi-scale fusion attention mechanism and the Soft-NMS algorithm. The multi-scale fusion attention mechanism captures key features of discriminative small targets in the feature map tensor from both spatial and channel dimensions, suppressing non-key information, reducing the impact of complex and unimportant information in the image, enhancing the network model's learning ability for important features of small targets. The Soft-NMS method improves accuracy by significantly reduces false positives in the detection results. To validate the performance of our proposed method, we conducted validation experiments on the PASCAL VOC dataset and evaluated the model's generalization ability on the MS COCO dataset. The experiments results demonstrate that our model achieves a significant improvement in small object detection, with a 5.41% increase in detection accuracy compared to the existing YOLOv8. Meanwhile, FLOPs are reduced by 49.62%, and the number of model parameters is reduced by 48.66%. These results fully confirm the effectiveness of our innovative method in achieving both lightweight deployment and significant efficacy in small object detection tasks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yu完成签到,获得积分20
刚刚
LiDaYang完成签到,获得积分10
刚刚
1秒前
1秒前
桐桐应助傅英俊采纳,获得10
1秒前
lyy发布了新的文献求助10
1秒前
又见三皮发布了新的文献求助10
2秒前
lynn完成签到,获得积分10
2秒前
2秒前
2秒前
小鱼完成签到 ,获得积分10
3秒前
15383387185完成签到,获得积分10
3秒前
伍秋望完成签到,获得积分10
3秒前
杨洋完成签到,获得积分10
4秒前
4秒前
无语的巨人完成签到 ,获得积分10
4秒前
全或无发布了新的文献求助20
5秒前
无限的绮晴完成签到,获得积分10
5秒前
爆米花应助邱航采纳,获得10
5秒前
993494543发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
夏天完成签到,获得积分20
6秒前
机智的天天完成签到,获得积分10
6秒前
6秒前
搜集达人应助LJQ采纳,获得10
6秒前
蚂蚁工人完成签到,获得积分10
6秒前
smt完成签到,获得积分10
6秒前
Pendulium发布了新的文献求助10
6秒前
SciGPT应助谢大喵采纳,获得10
6秒前
小木棉完成签到,获得积分10
7秒前
7秒前
华仔应助lei1987采纳,获得10
7秒前
bkagyin应助笑该动人采纳,获得10
8秒前
8秒前
绿洲完成签到,获得积分10
8秒前
8秒前
潇洒的觅荷完成签到,获得积分10
8秒前
xwxhbydmet发布了新的文献求助10
8秒前
yuanyuanyang发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5665264
求助须知:如何正确求助?哪些是违规求助? 4875562
关于积分的说明 15112548
捐赠科研通 4824343
什么是DOI,文献DOI怎么找? 2582710
邀请新用户注册赠送积分活动 1536677
关于科研通互助平台的介绍 1495284