LAYN: Lightweight Multi-Scale Attention YOLOv8 Network for Small Object Detection

计算机科学 目标检测 比例(比率) 人工智能 模式识别(心理学) 地图学 地理
作者
Songzhe Ma,Huimin Lu,Jie Liu,Yungang Zhu,Pengcheng Sang
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 29294-29307 被引量:10
标识
DOI:10.1109/access.2024.3368848
摘要

Currently, with the widespread application of embedded technology and the continuous improvement of computational power in mobile terminals, the efficient deployment of algorithms on embedded devices, while maintaining high accuracy and minimizing model size, has become a research hotspot. This paper addresses the challenges of deploying the YOLOv8 algorithm on embedded devices and proposes a novel lightweight object detection algorithm focusing on small object detection. We optimize the model through two key strategies, aiming to achieve lightweight deployment and improve the accuracy of small object detection. Firstly, GhostNet is introduced as the backbone network for YOLOv8 in order to achieve lightweight deployment. By using some cost effective operations to generate redundant feature maps, we not only reduce the number of model parameters while ensuring better detection results, but also improve the speed of the model. Secondly, a new multi-scale attention module is designed to enhance the network's acquisition of crucial information for small targets, which includes a multi-scale fusion attention mechanism and the Soft-NMS algorithm. The multi-scale fusion attention mechanism captures key features of discriminative small targets in the feature map tensor from both spatial and channel dimensions, suppressing non-key information, reducing the impact of complex and unimportant information in the image, enhancing the network model's learning ability for important features of small targets. The Soft-NMS method improves accuracy by significantly reduces false positives in the detection results. To validate the performance of our proposed method, we conducted validation experiments on the PASCAL VOC dataset and evaluated the model's generalization ability on the MS COCO dataset. The experiments results demonstrate that our model achieves a significant improvement in small object detection, with a 5.41% increase in detection accuracy compared to the existing YOLOv8. Meanwhile, FLOPs are reduced by 49.62%, and the number of model parameters is reduced by 48.66%. These results fully confirm the effectiveness of our innovative method in achieving both lightweight deployment and significant efficacy in small object detection tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
肥牛芋泥泥完成签到,获得积分10
2秒前
2秒前
顾矜应助勤恳的语蝶采纳,获得10
3秒前
共享精神应助着急的蜗牛采纳,获得10
4秒前
纯粹完成签到,获得积分20
5秒前
5秒前
5秒前
6秒前
7秒前
混沌武士完成签到 ,获得积分10
7秒前
001完成签到,获得积分10
8秒前
李健应助dream采纳,获得10
9秒前
情怀应助快乐的紫寒采纳,获得10
9秒前
kmzzy完成签到 ,获得积分10
9秒前
Moyanmisheng发布了新的文献求助10
10秒前
12秒前
巴拉拉完成签到,获得积分10
14秒前
李大侠完成签到,获得积分10
14秒前
陈老太完成签到 ,获得积分10
15秒前
沉默小笼包完成签到 ,获得积分10
16秒前
楚乐倩发布了新的文献求助10
17秒前
CipherSage应助ocean12138采纳,获得10
17秒前
Moyanmisheng完成签到,获得积分10
17秒前
狂奔的蜗牛完成签到,获得积分10
17秒前
咿呀完成签到,获得积分10
17秒前
18秒前
慕青应助meng采纳,获得10
20秒前
21秒前
22秒前
小帅发布了新的文献求助10
24秒前
24秒前
24秒前
25秒前
天天快乐应助千万雷同采纳,获得10
25秒前
26秒前
26秒前
zjj完成签到 ,获得积分10
26秒前
26秒前
27秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5073477
求助须知:如何正确求助?哪些是违规求助? 4293605
关于积分的说明 13378934
捐赠科研通 4114986
什么是DOI,文献DOI怎么找? 2253333
邀请新用户注册赠送积分活动 1258119
关于科研通互助平台的介绍 1191028