亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

LAYN: Lightweight Multi-Scale Attention YOLOv8 Network for Small Object Detection

计算机科学 目标检测 比例(比率) 人工智能 模式识别(心理学) 地图学 地理
作者
Songzhe Ma,Huimin Lu,Jie Liu,Yungang Zhu,Pengcheng Sang
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 29294-29307 被引量:10
标识
DOI:10.1109/access.2024.3368848
摘要

Currently, with the widespread application of embedded technology and the continuous improvement of computational power in mobile terminals, the efficient deployment of algorithms on embedded devices, while maintaining high accuracy and minimizing model size, has become a research hotspot. This paper addresses the challenges of deploying the YOLOv8 algorithm on embedded devices and proposes a novel lightweight object detection algorithm focusing on small object detection. We optimize the model through two key strategies, aiming to achieve lightweight deployment and improve the accuracy of small object detection. Firstly, GhostNet is introduced as the backbone network for YOLOv8 in order to achieve lightweight deployment. By using some cost effective operations to generate redundant feature maps, we not only reduce the number of model parameters while ensuring better detection results, but also improve the speed of the model. Secondly, a new multi-scale attention module is designed to enhance the network's acquisition of crucial information for small targets, which includes a multi-scale fusion attention mechanism and the Soft-NMS algorithm. The multi-scale fusion attention mechanism captures key features of discriminative small targets in the feature map tensor from both spatial and channel dimensions, suppressing non-key information, reducing the impact of complex and unimportant information in the image, enhancing the network model's learning ability for important features of small targets. The Soft-NMS method improves accuracy by significantly reduces false positives in the detection results. To validate the performance of our proposed method, we conducted validation experiments on the PASCAL VOC dataset and evaluated the model's generalization ability on the MS COCO dataset. The experiments results demonstrate that our model achieves a significant improvement in small object detection, with a 5.41% increase in detection accuracy compared to the existing YOLOv8. Meanwhile, FLOPs are reduced by 49.62%, and the number of model parameters is reduced by 48.66%. These results fully confirm the effectiveness of our innovative method in achieving both lightweight deployment and significant efficacy in small object detection tasks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
Ava应助阿司匹林采纳,获得30
5秒前
妮娜发布了新的文献求助10
11秒前
单纯的雪巧完成签到,获得积分10
13秒前
宋宋不迷糊完成签到 ,获得积分10
25秒前
阿司匹林完成签到 ,获得积分10
28秒前
29秒前
阿司匹林发布了新的文献求助30
34秒前
单纯的雪巧关注了科研通微信公众号
42秒前
larsy完成签到,获得积分10
50秒前
量子星尘发布了新的文献求助10
50秒前
54秒前
larsy发布了新的文献求助10
58秒前
1分钟前
CJH104完成签到 ,获得积分10
1分钟前
ZanE完成签到,获得积分10
1分钟前
一粟的粉r完成签到 ,获得积分10
1分钟前
华仔应助千千方方123采纳,获得10
2分钟前
2分钟前
alex发布了新的文献求助10
2分钟前
alex完成签到,获得积分10
2分钟前
2分钟前
2分钟前
千千方方123完成签到,获得积分10
2分钟前
李爱国应助ruan采纳,获得10
3分钟前
3分钟前
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
Lucas应助科研通管家采纳,获得10
3分钟前
Eatanicecube完成签到,获得积分10
3分钟前
FIN发布了新的文献求助600
3分钟前
4分钟前
4分钟前
雪霁发布了新的文献求助10
4分钟前
谦让夏山完成签到,获得积分10
4分钟前
宣灵薇完成签到 ,获得积分0
4分钟前
英姑应助谦让夏山采纳,获得10
4分钟前
雪霁完成签到,获得积分10
4分钟前
搜集达人应助hhh采纳,获得10
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5681520
求助须知:如何正确求助?哪些是违规求助? 5008964
关于积分的说明 15175712
捐赠科研通 4841035
什么是DOI,文献DOI怎么找? 2594826
邀请新用户注册赠送积分活动 1547832
关于科研通互助平台的介绍 1505846