LAYN: Lightweight Multi-Scale Attention YOLOv8 Network for Small Object Detection

计算机科学 目标检测 比例(比率) 人工智能 模式识别(心理学) 地图学 地理
作者
Songzhe Ma,Huimin Lu,Jie Liu,Yungang Zhu,Pengcheng Sang
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 29294-29307 被引量:10
标识
DOI:10.1109/access.2024.3368848
摘要

Currently, with the widespread application of embedded technology and the continuous improvement of computational power in mobile terminals, the efficient deployment of algorithms on embedded devices, while maintaining high accuracy and minimizing model size, has become a research hotspot. This paper addresses the challenges of deploying the YOLOv8 algorithm on embedded devices and proposes a novel lightweight object detection algorithm focusing on small object detection. We optimize the model through two key strategies, aiming to achieve lightweight deployment and improve the accuracy of small object detection. Firstly, GhostNet is introduced as the backbone network for YOLOv8 in order to achieve lightweight deployment. By using some cost effective operations to generate redundant feature maps, we not only reduce the number of model parameters while ensuring better detection results, but also improve the speed of the model. Secondly, a new multi-scale attention module is designed to enhance the network's acquisition of crucial information for small targets, which includes a multi-scale fusion attention mechanism and the Soft-NMS algorithm. The multi-scale fusion attention mechanism captures key features of discriminative small targets in the feature map tensor from both spatial and channel dimensions, suppressing non-key information, reducing the impact of complex and unimportant information in the image, enhancing the network model's learning ability for important features of small targets. The Soft-NMS method improves accuracy by significantly reduces false positives in the detection results. To validate the performance of our proposed method, we conducted validation experiments on the PASCAL VOC dataset and evaluated the model's generalization ability on the MS COCO dataset. The experiments results demonstrate that our model achieves a significant improvement in small object detection, with a 5.41% increase in detection accuracy compared to the existing YOLOv8. Meanwhile, FLOPs are reduced by 49.62%, and the number of model parameters is reduced by 48.66%. These results fully confirm the effectiveness of our innovative method in achieving both lightweight deployment and significant efficacy in small object detection tasks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
章铭-111完成签到 ,获得积分10
刚刚
核动力驴应助橘子采纳,获得10
刚刚
刚刚
1秒前
2秒前
3秒前
Air完成签到,获得积分10
3秒前
Owen应助YANYAN采纳,获得10
4秒前
踏实雪一发布了新的文献求助10
4秒前
4秒前
深情安青应助LIU采纳,获得10
5秒前
7秒前
柚子发布了新的文献求助10
7秒前
8秒前
12完成签到,获得积分10
9秒前
alan发布了新的文献求助10
9秒前
顾矜应助淡定的不言采纳,获得10
10秒前
11秒前
tepqi完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
13秒前
毛於菟发布了新的文献求助10
13秒前
14秒前
容二遥关注了科研通微信公众号
14秒前
布噜噜噜噜完成签到,获得积分10
14秒前
14秒前
15秒前
大模型应助eblog采纳,获得10
15秒前
Ting发布了新的文献求助20
15秒前
16秒前
端庄龙猫发布了新的文献求助30
16秒前
juaner完成签到,获得积分10
16秒前
KAI发布了新的文献求助10
17秒前
天天快乐应助二维马采纳,获得10
17秒前
17秒前
徐sir发布了新的文献求助10
17秒前
牛战士完成签到,获得积分10
18秒前
FSS完成签到,获得积分20
18秒前
YANYAN发布了新的文献求助10
18秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694761
求助须知:如何正确求助?哪些是违规求助? 5098681
关于积分的说明 15214483
捐赠科研通 4851292
什么是DOI,文献DOI怎么找? 2602253
邀请新用户注册赠送积分活动 1554141
关于科研通互助平台的介绍 1512049