已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

LAYN: Lightweight Multi-Scale Attention YOLOv8 Network for Small Object Detection

计算机科学 目标检测 比例(比率) 人工智能 模式识别(心理学) 地图学 地理
作者
Songzhe Ma,Huimin Lu,Jie Liu,Yungang Zhu,Pengcheng Sang
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 29294-29307 被引量:10
标识
DOI:10.1109/access.2024.3368848
摘要

Currently, with the widespread application of embedded technology and the continuous improvement of computational power in mobile terminals, the efficient deployment of algorithms on embedded devices, while maintaining high accuracy and minimizing model size, has become a research hotspot. This paper addresses the challenges of deploying the YOLOv8 algorithm on embedded devices and proposes a novel lightweight object detection algorithm focusing on small object detection. We optimize the model through two key strategies, aiming to achieve lightweight deployment and improve the accuracy of small object detection. Firstly, GhostNet is introduced as the backbone network for YOLOv8 in order to achieve lightweight deployment. By using some cost effective operations to generate redundant feature maps, we not only reduce the number of model parameters while ensuring better detection results, but also improve the speed of the model. Secondly, a new multi-scale attention module is designed to enhance the network's acquisition of crucial information for small targets, which includes a multi-scale fusion attention mechanism and the Soft-NMS algorithm. The multi-scale fusion attention mechanism captures key features of discriminative small targets in the feature map tensor from both spatial and channel dimensions, suppressing non-key information, reducing the impact of complex and unimportant information in the image, enhancing the network model's learning ability for important features of small targets. The Soft-NMS method improves accuracy by significantly reduces false positives in the detection results. To validate the performance of our proposed method, we conducted validation experiments on the PASCAL VOC dataset and evaluated the model's generalization ability on the MS COCO dataset. The experiments results demonstrate that our model achieves a significant improvement in small object detection, with a 5.41% increase in detection accuracy compared to the existing YOLOv8. Meanwhile, FLOPs are reduced by 49.62%, and the number of model parameters is reduced by 48.66%. These results fully confirm the effectiveness of our innovative method in achieving both lightweight deployment and significant efficacy in small object detection tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
陈海伦完成签到 ,获得积分10
3秒前
健康的人达完成签到,获得积分20
3秒前
脑洞疼应助刘忙采纳,获得10
3秒前
TingtingGZ发布了新的文献求助10
3秒前
3秒前
wanshang2340发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
ray发布了新的文献求助30
6秒前
6秒前
ding应助味道采纳,获得10
7秒前
科研小白发布了新的文献求助20
9秒前
huiqin发布了新的文献求助10
9秒前
FashionBoy应助Jy采纳,获得10
10秒前
11秒前
13秒前
13秒前
咸鱼不翻身完成签到,获得积分10
13秒前
14秒前
14秒前
14秒前
KQ2077完成签到 ,获得积分10
14秒前
大模型应助程老板采纳,获得10
16秒前
18秒前
桐桐应助卡西诺玛采纳,获得10
18秒前
保持客气完成签到,获得积分10
19秒前
21秒前
24秒前
banbieshenlu发布了新的文献求助10
24秒前
huiqin完成签到,获得积分10
25秒前
自由的元冬完成签到,获得积分10
25秒前
ray完成签到 ,获得积分20
27秒前
神仙渔完成签到,获得积分10
29秒前
Jy发布了新的文献求助10
29秒前
味道完成签到,获得积分10
32秒前
33秒前
丘比特应助科研小白采纳,获得10
35秒前
味道发布了新的文献求助10
36秒前
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5407434
求助须知:如何正确求助?哪些是违规求助? 4525015
关于积分的说明 14100656
捐赠科研通 4438741
什么是DOI,文献DOI怎么找? 2436477
邀请新用户注册赠送积分活动 1428463
关于科研通互助平台的介绍 1406482