异常检测
水准点(测量)
任务(项目管理)
推论
机器学习
编码(集合论)
上传
计算机科学
人工智能
计算机工程
地理
操作系统
工程类
集合(抽象数据类型)
程序设计语言
系统工程
大地测量学
作者
Guoyang Xie,Jinbao Wang,Jiaqi Liu,Jiayi Lyu,Yong Liu,Chengjie Wang,Feng Zheng,Yaochu Jin
标识
DOI:10.1109/tcyb.2024.3357213
摘要
Image anomaly detection (IAD) is an emerging and vital computer vision task in industrial manufacturing (IM). Recently, many advanced algorithms have been reported, but their performance deviates considerably with various IM settings. We realize that the lack of a uniform IM benchmark is hindering the development and usage of IAD methods in real-world applications. In addition, it is difficult for researchers to analyze IAD algorithms without a uniform benchmark. To solve this problem, we propose a uniform IM benchmark, for the first time, to assess how well these algorithms perform, which includes various levels of supervision (unsupervised versus fully supervised), learning paradigms (few-shot, continual and noisy label), and efficiency (memory usage and inference speed). Then, we construct a comprehensive IAD benchmark (IM-IAD), which includes 19 algorithms on seven major datasets with a uniform setting. Extensive experiments (17 017 total) on IM-IAD provide in-depth insights into IAD algorithm redesign or selection. Moreover, the proposed IM-IAD benchmark challenges existing algorithms and suggests future research directions. For reproducibility and accessibility, the source code is uploaded to the website: https://github.com/M-3LAB/open-iad
科研通智能强力驱动
Strongly Powered by AbleSci AI