DRL-Based Resource Allocation Game With Influence of Review Information for Vehicular Edge Computing Systems

资源配置 计算机科学 资源管理(计算) GSM演进的增强数据速率 边缘计算 博弈论 资源(消歧) 信息资源 计算机网络 分布式计算 电信 知识管理 经济 微观经济学
作者
Han Zhang,Hongbin Liang,Xintao Hong,Yiting Yao,Bin Lin,Dongmei Zhao
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:73 (7): 9591-9603 被引量:1
标识
DOI:10.1109/tvt.2024.3367657
摘要

Vehicle Edge Computing (VEC) represents a new technological paradigm. It delivers computational resources via edge nodes situated close to users. This approach not only satisfies the growing computational needs of vehicles but also minimizes communication latency. Such advancements are crucial for the evolution of intelligent transportation systems. To ensure these systems succeed, two key strategies are essential. First, edge servers must be effectively incentivized to engage in computation offloading. Second, vehicles require efficient resource request strategies, particularly when edge resources are limited. In this paper, we consider a duopolistic edge service market for vehicles with the existence of two service stage. For edge servers, they announce their resource pricing strategies before the start of each stage after a game has been played. After the conclusion of the first stage, vehicles generate reviews based on their service experience for both servers. These reviews will affect the vehicle's choice of edge servers in the next stage. Therefore, edge servers must devise effective pricing strategies to optimize their profits over both stages. Vehicles, after making their choice at any stage based on personal preferences, service quality, and resource pricing, must also engage in a game with other vehicles choosing the same server to determine their resource request strategy. In cases where vehicles prefer not to disclose their resource requests and other information, we propose a deep reinforcement learning framework to maximize the utility of each vehicle. Simulation results validate the effectiveness of our resource allocation scheme based on game theory and deep reinforcement learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
tuanhust应助lixiao采纳,获得50
2秒前
humble发布了新的文献求助10
4秒前
叶十七完成签到,获得积分10
5秒前
李爱国应助Lesterem采纳,获得200
5秒前
Lucas应助超帅的遥采纳,获得10
5秒前
lucky完成签到,获得积分10
5秒前
qin完成签到,获得积分10
5秒前
clock完成签到,获得积分10
6秒前
19应助erdan采纳,获得50
6秒前
深情安青应助烂漫的弘文采纳,获得10
7秒前
7秒前
nini完成签到,获得积分10
7秒前
似水无痕完成签到,获得积分10
10秒前
humble完成签到,获得积分10
10秒前
科目三应助Who采纳,获得10
12秒前
nz完成签到,获得积分10
13秒前
pp发布了新的文献求助10
13秒前
15秒前
乐观安蕾完成签到,获得积分10
15秒前
15秒前
冬虫夏草完成签到,获得积分10
16秒前
16秒前
立军发布了新的文献求助10
17秒前
19秒前
HEIKU应助ZZ采纳,获得20
21秒前
23秒前
blueweier完成签到 ,获得积分10
26秒前
26秒前
hkh发布了新的文献求助10
27秒前
wwz发布了新的文献求助10
27秒前
顺心的猪完成签到 ,获得积分10
27秒前
PARADOX完成签到,获得积分20
29秒前
我一拳打树上完成签到,获得积分10
33秒前
38秒前
EaRnn完成签到,获得积分10
39秒前
40秒前
小牛牛发布了新的文献求助10
40秒前
在水一方应助自由刺猬采纳,获得10
40秒前
41秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308460
求助须知:如何正确求助?哪些是违规求助? 2941800
关于积分的说明 8505840
捐赠科研通 2616702
什么是DOI,文献DOI怎么找? 1429755
科研通“疑难数据库(出版商)”最低求助积分说明 663888
邀请新用户注册赠送积分活动 648967