纳米晶材料
铜
乙烯
重组
电化学
催化作用
法拉第效率
密度泛函理论
材料科学
电解
二氧化碳电化学还原
化学工程
化学
冶金
纳米技术
电极
有机化学
电解质
物理化学
计算化学
财务
工程类
一氧化碳
经济
作者
Wensheng Fang,Ruihu Lu,Fumin Li,Chaohui He,Dan Wu,Kaihang Yue,Yu Mao,Wei Guo,Bao Yu Xia,Fei Song,Tao Yao,Ziyun Wang,Bao Yu Xia
标识
DOI:10.1002/anie.202319936
摘要
Abstract Revealing the dynamic reconstruction process and tailoring advanced copper (Cu) catalysts is of paramount significance for promoting the conversion of CO 2 into ethylene (C 2 H 4 ), paving the way for carbon neutralization and facilitating renewable energy storage. In this study, we initially employed density functional theory (DFT) and molecular dynamics (MD) simulations to elucidate the restructuring behavior of a catalyst under electrochemical conditions and delineated its restructuring patterns. Leveraging insights into this restructuring behavior, we devised an efficient, low‐coordination copper‐based catalyst. The resulting synthesized catalyst demonstrated an impressive Faradaic efficiency (FE) exceeding 70 % for ethylene generation at a current density of 800 mA cm −2 . Furthermore, it showed robust stability, maintaining consistent performance for 230 hours at a cell voltage of 3.5 V in a full‐cell system. Our research not only deepens the understanding of the active sites involved in designing efficient carbon dioxide reduction reaction (CO 2 RR) catalysts but also advances CO 2 electrolysis technologies for industrial application.
科研通智能强力驱动
Strongly Powered by AbleSci AI