Research on Quantification Method of Ellipsoidal Defects Based on Leakage Magnetic Detection

椭球体 泄漏(经济) 材料科学 电子工程 计算机科学 物理 工程类 天文 经济 宏观经济学
作者
Pengfei Gao,Hao Geng,Lijian Yang,Fuyin Zheng,Yuming Su
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:24 (9): 14503-14518
标识
DOI:10.1109/jsen.2024.3372597
摘要

Pipeline leakage magnetic detection technology is an effective means to ensure the safe operation of pipelines. The key link in leakage detection technology is to determine the specific size of the defects according to the leakage signal. In the actual pipeline detection process, the defect shape is mostly complex and irregular, and the traditional rectangular defects are difficult to accurately characterize. In order to solve this problem, this article uses ellipsoidal defects as the research object to replace the complex defects in pipeline inspection, combines the ellipsoidal coordinate system, constructs the forward mathematical model of ellipsoidal defects through vector synthesis, and carries out mathematical analysis and calculation of the magnetic distribution law of the leakage signals in the pipeline in the three axes (axial, circumferential, and radial). In addition, a defect size inversion algorithm is constructed based on the constructed mathematical model, and systematic experiments are carried out. The results show that the smaller the length and the larger the width of the defects are more sensitive to the change of depth, and in this model, the errors of solving the radial component of the defects is 14.3% on average, and the errors of solving the axial component is 16.6% on average. The solution accuracy is improved compared to the traditional model. Under this orthogonal mathematical model, the distribution characteristics of the elliptical leakage magnetic field obtained are in good agreement with the inverse model, and the model is of practical significance for improving the quality of defect assessment.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助Hosea采纳,获得10
刚刚
南屿汐月完成签到 ,获得积分10
1秒前
衣兮完成签到,获得积分10
2秒前
Lmy发布了新的文献求助10
4秒前
陈陈陈完成签到,获得积分10
5秒前
归尘应助2鱼采纳,获得10
5秒前
李健的小迷弟应助2鱼采纳,获得30
5秒前
tiny_face完成签到,获得积分10
6秒前
7秒前
7秒前
xiaokuli发布了新的文献求助10
9秒前
10秒前
11秒前
Hello应助20250212采纳,获得10
11秒前
66688发布了新的文献求助10
12秒前
善学以致用应助xx采纳,获得10
13秒前
王德俊发布了新的文献求助10
13秒前
Hosea完成签到,获得积分10
13秒前
16秒前
赘婿应助姜彦乔采纳,获得10
17秒前
17秒前
龚明洋1完成签到,获得积分10
17秒前
18秒前
18秒前
RR发布了新的文献求助10
18秒前
19秒前
20秒前
Ava应助pearsir采纳,获得10
21秒前
123完成签到,获得积分20
21秒前
庾念真发布了新的文献求助40
21秒前
wang发布了新的文献求助10
22秒前
XiaoY发布了新的文献求助10
22秒前
滴滴哒哒完成签到 ,获得积分10
22秒前
岁月轮回发布了新的文献求助10
23秒前
长情诗蕾发布了新的文献求助10
23秒前
Yang发布了新的文献求助10
24秒前
123发布了新的文献求助10
24秒前
ding应助激昂的飞松采纳,获得10
25秒前
ZN发布了新的文献求助10
25秒前
27秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 纳米技术 物理 计算机科学 化学工程 基因 复合材料 遗传学 物理化学 免疫学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3416011
求助须知:如何正确求助?哪些是违规求助? 3017735
关于积分的说明 8882350
捐赠科研通 2705345
什么是DOI,文献DOI怎么找? 1483501
科研通“疑难数据库(出版商)”最低求助积分说明 685735
邀请新用户注册赠送积分活动 680742