AMIFN: Aspect-guided multi-view interactions and fusion network for multimodal aspect-based sentiment analysis

计算机科学 情绪分析 人工智能 杠杆(统计) 判决 代表(政治) 语义学(计算机科学) 图像(数学) 自然语言处理 机器学习 政治 政治学 法学 程序设计语言
作者
Juan Yang,Mengya Xu,Yali Xiao,Xu Du
出处
期刊:Neurocomputing [Elsevier]
卷期号:573: 127222-127222 被引量:15
标识
DOI:10.1016/j.neucom.2023.127222
摘要

Aspect-based sentiment analysis (ABSA), which aims to analyze users' sentiment towards the targeted aspect, has recently gained increasing attention due to its importance in supporting corresponding decision-makings in various tasks. Most existing ABSA studies primarily depend on only textual modality, but ignore the fact that in many cases the targeted aspect doesn't appear in the sentence. Thus, multimodal ABSA is expected to alleviate this dilemma. However, most existing MABSA approaches still suffer from the following limitations: (1) ignoring the possible aspect-image irrelevant issue; (2) ignoring the coarse-grained interaction between the sentence and its associated image; (3) failing to simultaneously leverage multiple types of useful knowledge information. To address these issues, we propose an aspect-guided multi-view interactions and fusion network (AMIFN) for MABSA. Specifically, we utilize the multi-head attention mechanism to generate aspect-guided textual representation, which is used as the extended aspect semantic for guiding the subsequent aspect-related interactions. When exploring aspect-guided visual representation, we employ the image gate to dynamically filter potential noise introduced by the associated image to generate the final image representation. Meanwhile, the coarse-grained sentence-image interaction, which contains context and semantics information, and the syntactic dependencies, are leveraged for graph construction to obtain aspect-guided text-image interaction representations. Finally, the extracted multi-view interaction representations are integrated for sentiment classification. Extensive experimental results on three multimodal benchmark datasets demonstrate the superiority and rationality of AMIFN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
3秒前
阿超完成签到,获得积分10
3秒前
LvCR发布了新的文献求助10
4秒前
李健的粉丝团团长应助Mine采纳,获得10
4秒前
coffee发布了新的文献求助10
4秒前
好好好完成签到 ,获得积分20
5秒前
11发布了新的文献求助10
8秒前
阔达的衣完成签到 ,获得积分10
10秒前
11秒前
wei发布了新的文献求助10
11秒前
12秒前
sevenhill应助梅夕阳采纳,获得10
14秒前
nml发布了新的文献求助10
15秒前
FashionBoy应助HJ采纳,获得10
15秒前
Mine发布了新的文献求助10
16秒前
Tracy完成签到,获得积分10
17秒前
舒心凡应助shxxy123采纳,获得50
17秒前
crescendo完成签到,获得积分10
18秒前
Orange应助杨冠渊采纳,获得10
20秒前
21秒前
小zhu关注了科研通微信公众号
23秒前
24秒前
刘康艺发布了新的文献求助10
26秒前
nml完成签到,获得积分10
27秒前
沉默的冬寒完成签到 ,获得积分10
28秒前
大龙哥886应助科研通管家采纳,获得10
30秒前
传奇3应助科研通管家采纳,获得10
30秒前
无花果应助科研通管家采纳,获得10
30秒前
今后应助科研通管家采纳,获得10
30秒前
浮游应助科研通管家采纳,获得10
30秒前
大龙哥886应助科研通管家采纳,获得10
30秒前
今后应助科研通管家采纳,获得10
30秒前
浮游应助科研通管家采纳,获得10
30秒前
核桃应助科研通管家采纳,获得30
30秒前
浮游应助科研通管家采纳,获得10
30秒前
ZOE应助科研通管家采纳,获得60
30秒前
完美世界应助科研通管家采纳,获得10
30秒前
SciGPT应助科研通管家采纳,获得10
30秒前
cc应助科研通管家采纳,获得30
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560180
求助须知:如何正确求助?哪些是违规求助? 4645357
关于积分的说明 14674990
捐赠科研通 4586495
什么是DOI,文献DOI怎么找? 2516447
邀请新用户注册赠送积分活动 1490087
关于科研通互助平台的介绍 1460900