AMIFN: Aspect-guided multi-view interactions and fusion network for multimodal aspect-based sentiment analysis

计算机科学 情绪分析 人工智能 融合 自然语言处理 机器学习 语言学 哲学
作者
Juan Yang,Mengya Xu,Yali Xiao,Xu Du
出处
期刊:Neurocomputing [Elsevier]
卷期号:573: 127222-127222 被引量:2
标识
DOI:10.1016/j.neucom.2023.127222
摘要

Aspect-based sentiment analysis (ABSA), which aims to analyze users' sentiment towards the targeted aspect, has recently gained increasing attention due to its importance in supporting corresponding decision-makings in various tasks. Most existing ABSA studies primarily depend on only textual modality, but ignore the fact that in many cases the targeted aspect doesn't appear in the sentence. Thus, multimodal ABSA is expected to alleviate this dilemma. However, most existing MABSA approaches still suffer from the following limitations: (1) ignoring the possible aspect-image irrelevant issue; (2) ignoring the coarse-grained interaction between the sentence and its associated image; (3) failing to simultaneously leverage multiple types of useful knowledge information. To address these issues, we propose an aspect-guided multi-view interactions and fusion network (AMIFN) for MABSA. Specifically, we utilize the multi-head attention mechanism to generate aspect-guided textual representation, which is used as the extended aspect semantic for guiding the subsequent aspect-related interactions. When exploring aspect-guided visual representation, we employ the image gate to dynamically filter potential noise introduced by the associated image to generate the final image representation. Meanwhile, the coarse-grained sentence-image interaction, which contains context and semantics information, and the syntactic dependencies, are leveraged for graph construction to obtain aspect-guided text-image interaction representations. Finally, the extracted multi-view interaction representations are integrated for sentiment classification. Extensive experimental results on three multimodal benchmark datasets demonstrate the superiority and rationality of AMIFN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小丛雨发布了新的文献求助10
刚刚
多米发布了新的文献求助10
1秒前
赘婿应助HarryBaturu采纳,获得30
1秒前
爱吃香菜完成签到,获得积分10
2秒前
柠七完成签到,获得积分10
2秒前
lily88发布了新的文献求助10
2秒前
2秒前
打工人发布了新的文献求助10
2秒前
2秒前
情怀应助xzc采纳,获得10
3秒前
7秒前
7秒前
多米完成签到,获得积分10
8秒前
Le发布了新的文献求助10
8秒前
小明发布了新的文献求助10
9秒前
科目三应助打工人采纳,获得10
10秒前
zz完成签到,获得积分10
10秒前
fangpiupiu发布了新的文献求助10
12秒前
正直肖完成签到,获得积分10
12秒前
WRZ完成签到 ,获得积分10
12秒前
12秒前
cy发布了新的文献求助10
14秒前
乐乐应助Heart采纳,获得10
14秒前
Le完成签到,获得积分10
15秒前
打打应助fangpiupiu采纳,获得10
16秒前
17秒前
炙热冰夏完成签到,获得积分10
17秒前
如履平川完成签到 ,获得积分10
17秒前
17秒前
zzz发布了新的文献求助10
18秒前
18秒前
打工人完成签到,获得积分10
18秒前
you一发布了新的文献求助10
18秒前
19秒前
19秒前
一昂杨完成签到,获得积分10
20秒前
小蘑菇应助葛力采纳,获得10
20秒前
wangayting发布了新的文献求助30
20秒前
sss发布了新的文献求助10
23秒前
23秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137930
求助须知:如何正确求助?哪些是违规求助? 2788832
关于积分的说明 7788793
捐赠科研通 2445241
什么是DOI,文献DOI怎么找? 1300236
科研通“疑难数据库(出版商)”最低求助积分说明 625878
版权声明 601046