已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

AMIFN: Aspect-guided multi-view interactions and fusion network for multimodal aspect-based sentiment analysis

计算机科学 情绪分析 人工智能 杠杆(统计) 判决 代表(政治) 语义学(计算机科学) 图像(数学) 自然语言处理 机器学习 政治学 政治 程序设计语言 法学
作者
Juan Yang,Mengya Xu,Yali Xiao,Xu Du
出处
期刊:Neurocomputing [Elsevier]
卷期号:573: 127222-127222 被引量:26
标识
DOI:10.1016/j.neucom.2023.127222
摘要

Aspect-based sentiment analysis (ABSA), which aims to analyze users' sentiment towards the targeted aspect, has recently gained increasing attention due to its importance in supporting corresponding decision-makings in various tasks. Most existing ABSA studies primarily depend on only textual modality, but ignore the fact that in many cases the targeted aspect doesn't appear in the sentence. Thus, multimodal ABSA is expected to alleviate this dilemma. However, most existing MABSA approaches still suffer from the following limitations: (1) ignoring the possible aspect-image irrelevant issue; (2) ignoring the coarse-grained interaction between the sentence and its associated image; (3) failing to simultaneously leverage multiple types of useful knowledge information. To address these issues, we propose an aspect-guided multi-view interactions and fusion network (AMIFN) for MABSA. Specifically, we utilize the multi-head attention mechanism to generate aspect-guided textual representation, which is used as the extended aspect semantic for guiding the subsequent aspect-related interactions. When exploring aspect-guided visual representation, we employ the image gate to dynamically filter potential noise introduced by the associated image to generate the final image representation. Meanwhile, the coarse-grained sentence-image interaction, which contains context and semantics information, and the syntactic dependencies, are leveraged for graph construction to obtain aspect-guided text-image interaction representations. Finally, the extracted multi-view interaction representations are integrated for sentiment classification. Extensive experimental results on three multimodal benchmark datasets demonstrate the superiority and rationality of AMIFN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
小张完成签到 ,获得积分10
4秒前
小周发布了新的文献求助10
4秒前
claud完成签到 ,获得积分10
5秒前
仲夏夜之梦完成签到,获得积分10
6秒前
8秒前
四玖玖发布了新的文献求助10
9秒前
cnspower发布了新的文献求助100
9秒前
深情安青应助能干寒松采纳,获得10
11秒前
涛涛完成签到,获得积分20
11秒前
潇洒荷花完成签到 ,获得积分10
11秒前
脆啵啵马克宝完成签到 ,获得积分10
12秒前
单调的蜜蜂完成签到,获得积分10
12秒前
久桃发布了新的文献求助10
15秒前
ya发布了新的文献求助200
16秒前
20秒前
能干寒松完成签到,获得积分10
20秒前
Cc完成签到 ,获得积分10
21秒前
22秒前
23秒前
久桃完成签到,获得积分10
24秒前
26秒前
27秒前
28秒前
29秒前
四玖玖完成签到,获得积分10
30秒前
充电宝应助liu采纳,获得10
31秒前
刘111完成签到,获得积分10
35秒前
桃桃子发布了新的文献求助10
36秒前
ya完成签到,获得积分10
39秒前
xingsixs完成签到 ,获得积分10
41秒前
ruru发布了新的文献求助10
41秒前
抚琴祛魅完成签到 ,获得积分10
45秒前
45秒前
蓝色天空完成签到,获得积分10
47秒前
桃桃子完成签到,获得积分10
49秒前
49秒前
53秒前
风月难安发布了新的文献求助10
53秒前
孤芳自赏IrisKing完成签到 ,获得积分10
55秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 25000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5705551
求助须知:如何正确求助?哪些是违规求助? 5164845
关于积分的说明 15245734
捐赠科研通 4859361
什么是DOI,文献DOI怎么找? 2607785
邀请新用户注册赠送积分活动 1558875
关于科研通互助平台的介绍 1516424