AMIFN: Aspect-guided multi-view interactions and fusion network for multimodal aspect-based sentiment analysis

计算机科学 情绪分析 人工智能 杠杆(统计) 判决 代表(政治) 语义学(计算机科学) 图像(数学) 自然语言处理 机器学习 政治 政治学 法学 程序设计语言
作者
Juan Yang,Mengya Xu,Yali Xiao,Xu Du
出处
期刊:Neurocomputing [Elsevier]
卷期号:573: 127222-127222 被引量:15
标识
DOI:10.1016/j.neucom.2023.127222
摘要

Aspect-based sentiment analysis (ABSA), which aims to analyze users' sentiment towards the targeted aspect, has recently gained increasing attention due to its importance in supporting corresponding decision-makings in various tasks. Most existing ABSA studies primarily depend on only textual modality, but ignore the fact that in many cases the targeted aspect doesn't appear in the sentence. Thus, multimodal ABSA is expected to alleviate this dilemma. However, most existing MABSA approaches still suffer from the following limitations: (1) ignoring the possible aspect-image irrelevant issue; (2) ignoring the coarse-grained interaction between the sentence and its associated image; (3) failing to simultaneously leverage multiple types of useful knowledge information. To address these issues, we propose an aspect-guided multi-view interactions and fusion network (AMIFN) for MABSA. Specifically, we utilize the multi-head attention mechanism to generate aspect-guided textual representation, which is used as the extended aspect semantic for guiding the subsequent aspect-related interactions. When exploring aspect-guided visual representation, we employ the image gate to dynamically filter potential noise introduced by the associated image to generate the final image representation. Meanwhile, the coarse-grained sentence-image interaction, which contains context and semantics information, and the syntactic dependencies, are leveraged for graph construction to obtain aspect-guided text-image interaction representations. Finally, the extracted multi-view interaction representations are integrated for sentiment classification. Extensive experimental results on three multimodal benchmark datasets demonstrate the superiority and rationality of AMIFN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
乐观的颦发布了新的文献求助10
2秒前
林芊万应助cc采纳,获得10
2秒前
2秒前
i3utter完成签到,获得积分10
3秒前
老福贵儿应助smallsix采纳,获得10
5秒前
田様应助小华安采纳,获得10
6秒前
6秒前
wx0816发布了新的文献求助10
6秒前
ZOE应助大力蚂蚁采纳,获得50
7秒前
科目三应助退休小行星采纳,获得10
8秒前
10秒前
kk完成签到 ,获得积分10
10秒前
12秒前
12秒前
15秒前
zz发布了新的文献求助10
15秒前
wx0816完成签到,获得积分10
15秒前
16秒前
JingjingYao完成签到,获得积分10
17秒前
weiwei完成签到,获得积分10
17秒前
DD0066发布了新的文献求助10
18秒前
JamesPei应助科研通管家采纳,获得10
18秒前
ieee拯救者完成签到,获得积分10
18秒前
18秒前
小蘑菇应助科研通管家采纳,获得10
18秒前
天天快乐应助科研通管家采纳,获得10
19秒前
赘婿应助科研通管家采纳,获得10
19秒前
科研通AI6应助科研通管家采纳,获得10
19秒前
NexusExplorer应助科研通管家采纳,获得10
19秒前
研友_VZG7GZ应助科研通管家采纳,获得10
19秒前
lexi应助科研通管家采纳,获得10
19秒前
19秒前
19秒前
19秒前
顾矜应助科研通管家采纳,获得10
19秒前
zhonglv7应助科研通管家采纳,获得10
19秒前
曾无忧应助科研通管家采纳,获得10
19秒前
曾无忧应助科研通管家采纳,获得10
19秒前
曾无忧应助科研通管家采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603927
求助须知:如何正确求助?哪些是违规求助? 4688787
关于积分的说明 14856110
捐赠科研通 4695468
什么是DOI,文献DOI怎么找? 2541034
邀请新用户注册赠送积分活动 1507185
关于科研通互助平台的介绍 1471832