已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

AMIFN: Aspect-guided multi-view interactions and fusion network for multimodal aspect-based sentiment analysis

计算机科学 情绪分析 人工智能 杠杆(统计) 判决 代表(政治) 语义学(计算机科学) 图像(数学) 自然语言处理 机器学习 政治 政治学 法学 程序设计语言
作者
Juan Yang,Mengya Xu,Yali Xiao,Xu Du
出处
期刊:Neurocomputing [Elsevier]
卷期号:573: 127222-127222 被引量:15
标识
DOI:10.1016/j.neucom.2023.127222
摘要

Aspect-based sentiment analysis (ABSA), which aims to analyze users' sentiment towards the targeted aspect, has recently gained increasing attention due to its importance in supporting corresponding decision-makings in various tasks. Most existing ABSA studies primarily depend on only textual modality, but ignore the fact that in many cases the targeted aspect doesn't appear in the sentence. Thus, multimodal ABSA is expected to alleviate this dilemma. However, most existing MABSA approaches still suffer from the following limitations: (1) ignoring the possible aspect-image irrelevant issue; (2) ignoring the coarse-grained interaction between the sentence and its associated image; (3) failing to simultaneously leverage multiple types of useful knowledge information. To address these issues, we propose an aspect-guided multi-view interactions and fusion network (AMIFN) for MABSA. Specifically, we utilize the multi-head attention mechanism to generate aspect-guided textual representation, which is used as the extended aspect semantic for guiding the subsequent aspect-related interactions. When exploring aspect-guided visual representation, we employ the image gate to dynamically filter potential noise introduced by the associated image to generate the final image representation. Meanwhile, the coarse-grained sentence-image interaction, which contains context and semantics information, and the syntactic dependencies, are leveraged for graph construction to obtain aspect-guided text-image interaction representations. Finally, the extracted multi-view interaction representations are integrated for sentiment classification. Extensive experimental results on three multimodal benchmark datasets demonstrate the superiority and rationality of AMIFN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高屋建瓴完成签到,获得积分10
1秒前
无花果应助momi采纳,获得50
3秒前
菜芽君完成签到,获得积分10
4秒前
爆米花应助leslie采纳,获得10
9秒前
wanci应助leslie采纳,获得10
9秒前
科研通AI6应助leslie采纳,获得10
9秒前
WhiteCaramel完成签到 ,获得积分10
10秒前
爱听歌的火火完成签到,获得积分20
12秒前
小栗子完成签到,获得积分10
14秒前
16秒前
徐biao发布了新的文献求助20
16秒前
鹿小新发布了新的文献求助10
20秒前
jyy完成签到,获得积分10
21秒前
蛙蛙完成签到,获得积分10
22秒前
华仔应助徐biao采纳,获得10
30秒前
绮烟完成签到 ,获得积分10
31秒前
32秒前
酷酷以柳完成签到,获得积分10
33秒前
Criminology34举报无风求助涉嫌违规
34秒前
月儿完成签到 ,获得积分10
42秒前
44秒前
46秒前
52秒前
阳阳完成签到,获得积分10
54秒前
moiumuio完成签到,获得积分10
55秒前
56秒前
郝誉发布了新的文献求助10
57秒前
cenghao发布了新的文献求助10
57秒前
圈哥完成签到 ,获得积分10
57秒前
香樟沐雪完成签到 ,获得积分10
58秒前
one应助Fionn采纳,获得10
59秒前
斯文败类应助科研通管家采纳,获得10
1分钟前
思源应助科研通管家采纳,获得10
1分钟前
无极微光应助科研通管家采纳,获得20
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
BowieHuang应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
VDC发布了新的文献求助10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590260
求助须知:如何正确求助?哪些是违规求助? 4674687
关于积分的说明 14795015
捐赠科研通 4631029
什么是DOI,文献DOI怎么找? 2532659
邀请新用户注册赠送积分活动 1501235
关于科研通互助平台的介绍 1468581