AMIFN: Aspect-guided multi-view interactions and fusion network for multimodal aspect-based sentiment analysis

计算机科学 情绪分析 人工智能 杠杆(统计) 判决 代表(政治) 语义学(计算机科学) 图像(数学) 自然语言处理 机器学习 政治 政治学 法学 程序设计语言
作者
Juan Yang,Mengya Xu,Yali Xiao,Xu Du
出处
期刊:Neurocomputing [Elsevier]
卷期号:573: 127222-127222 被引量:15
标识
DOI:10.1016/j.neucom.2023.127222
摘要

Aspect-based sentiment analysis (ABSA), which aims to analyze users' sentiment towards the targeted aspect, has recently gained increasing attention due to its importance in supporting corresponding decision-makings in various tasks. Most existing ABSA studies primarily depend on only textual modality, but ignore the fact that in many cases the targeted aspect doesn't appear in the sentence. Thus, multimodal ABSA is expected to alleviate this dilemma. However, most existing MABSA approaches still suffer from the following limitations: (1) ignoring the possible aspect-image irrelevant issue; (2) ignoring the coarse-grained interaction between the sentence and its associated image; (3) failing to simultaneously leverage multiple types of useful knowledge information. To address these issues, we propose an aspect-guided multi-view interactions and fusion network (AMIFN) for MABSA. Specifically, we utilize the multi-head attention mechanism to generate aspect-guided textual representation, which is used as the extended aspect semantic for guiding the subsequent aspect-related interactions. When exploring aspect-guided visual representation, we employ the image gate to dynamically filter potential noise introduced by the associated image to generate the final image representation. Meanwhile, the coarse-grained sentence-image interaction, which contains context and semantics information, and the syntactic dependencies, are leveraged for graph construction to obtain aspect-guided text-image interaction representations. Finally, the extracted multi-view interaction representations are integrated for sentiment classification. Extensive experimental results on three multimodal benchmark datasets demonstrate the superiority and rationality of AMIFN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助执着从灵采纳,获得10
刚刚
可靠的雨筠完成签到,获得积分10
刚刚
刚刚
鲤黎黎发布了新的文献求助10
刚刚
abc完成签到,获得积分10
刚刚
落后乐荷完成签到,获得积分10
1秒前
Eureka完成签到,获得积分10
1秒前
liuzhong完成签到,获得积分10
2秒前
曾经的安珊完成签到,获得积分20
2秒前
yu完成签到,获得积分10
2秒前
2秒前
充电宝应助DJDJ采纳,获得10
2秒前
2秒前
沉默的婴发布了新的文献求助20
3秒前
香蕉冰真完成签到,获得积分10
3秒前
复杂鱼完成签到,获得积分20
3秒前
3秒前
Benjamin完成签到,获得积分20
3秒前
苏silence发布了新的文献求助10
3秒前
Tingting完成签到 ,获得积分10
3秒前
普鲁卡因发布了新的文献求助10
3秒前
WangQ完成签到,获得积分10
4秒前
4秒前
niuya完成签到,获得积分10
4秒前
5秒前
灵光一闪发布了新的文献求助30
5秒前
英俊的铭应助大大采纳,获得10
5秒前
666完成签到,获得积分10
5秒前
5秒前
XuanQi完成签到,获得积分10
5秒前
简默发布了新的文献求助10
6秒前
新八完成签到,获得积分10
6秒前
眼睛大凤完成签到 ,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
Hello应助小姜该看论文了采纳,获得10
7秒前
Stella应助怡然的罡采纳,获得10
7秒前
7秒前
大佬完成签到,获得积分10
7秒前
细心慕凝发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573997
求助须知:如何正确求助?哪些是违规求助? 4660326
关于积分的说明 14728933
捐赠科研通 4600192
什么是DOI,文献DOI怎么找? 2524706
邀请新用户注册赠送积分活动 1495014
关于科研通互助平台的介绍 1465017