清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

AMIFN: Aspect-guided multi-view interactions and fusion network for multimodal aspect-based sentiment analysis

计算机科学 情绪分析 人工智能 杠杆(统计) 判决 代表(政治) 语义学(计算机科学) 图像(数学) 自然语言处理 机器学习 政治 政治学 法学 程序设计语言
作者
Juan Yang,Mengya Xu,Yali Xiao,Xu Du
出处
期刊:Neurocomputing [Elsevier]
卷期号:573: 127222-127222 被引量:15
标识
DOI:10.1016/j.neucom.2023.127222
摘要

Aspect-based sentiment analysis (ABSA), which aims to analyze users' sentiment towards the targeted aspect, has recently gained increasing attention due to its importance in supporting corresponding decision-makings in various tasks. Most existing ABSA studies primarily depend on only textual modality, but ignore the fact that in many cases the targeted aspect doesn't appear in the sentence. Thus, multimodal ABSA is expected to alleviate this dilemma. However, most existing MABSA approaches still suffer from the following limitations: (1) ignoring the possible aspect-image irrelevant issue; (2) ignoring the coarse-grained interaction between the sentence and its associated image; (3) failing to simultaneously leverage multiple types of useful knowledge information. To address these issues, we propose an aspect-guided multi-view interactions and fusion network (AMIFN) for MABSA. Specifically, we utilize the multi-head attention mechanism to generate aspect-guided textual representation, which is used as the extended aspect semantic for guiding the subsequent aspect-related interactions. When exploring aspect-guided visual representation, we employ the image gate to dynamically filter potential noise introduced by the associated image to generate the final image representation. Meanwhile, the coarse-grained sentence-image interaction, which contains context and semantics information, and the syntactic dependencies, are leveraged for graph construction to obtain aspect-guided text-image interaction representations. Finally, the extracted multi-view interaction representations are integrated for sentiment classification. Extensive experimental results on three multimodal benchmark datasets demonstrate the superiority and rationality of AMIFN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
8秒前
lingling完成签到 ,获得积分10
10秒前
cwanglh完成签到 ,获得积分10
16秒前
sci完成签到 ,获得积分10
19秒前
19秒前
沉沉完成签到 ,获得积分0
35秒前
36秒前
鱼鱼鱼鱼完成签到 ,获得积分10
45秒前
无花果应助科研通管家采纳,获得10
51秒前
chcmy完成签到 ,获得积分0
1分钟前
忧伤的摩托完成签到,获得积分20
1分钟前
xmhxpz完成签到,获得积分10
1分钟前
领导范儿应助忧伤的摩托采纳,获得10
1分钟前
1分钟前
1分钟前
Nancy完成签到 ,获得积分10
1分钟前
Hong完成签到 ,获得积分10
1分钟前
Matberry完成签到 ,获得积分10
2分钟前
charih完成签到 ,获得积分10
2分钟前
蓝意完成签到,获得积分0
2分钟前
tingalan完成签到,获得积分0
2分钟前
回首不再是少年完成签到,获得积分0
2分钟前
隐形听双完成签到 ,获得积分10
2分钟前
Arctic完成签到 ,获得积分10
2分钟前
2分钟前
冰阔落完成签到 ,获得积分10
3分钟前
寡核苷酸小白完成签到 ,获得积分10
3分钟前
daomaihu完成签到,获得积分10
3分钟前
火星上的雨柏完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
雪山飞龙发布了新的文献求助10
3分钟前
迅速的幻雪完成签到 ,获得积分10
3分钟前
3分钟前
上官若男应助刻苦的如霜采纳,获得10
3分钟前
zpl完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
佚名发布了新的文献求助10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482602
求助须知:如何正确求助?哪些是违规求助? 4583348
关于积分的说明 14389217
捐赠科研通 4512509
什么是DOI,文献DOI怎么找? 2473013
邀请新用户注册赠送积分活动 1459195
关于科研通互助平台的介绍 1432729