Superior Strength, Toughness, and Damage‐Tolerance Observed in Microlattices of Aperiodic Unit Cells

非周期图 材料科学 韧性 灾难性故障 断裂韧性 结构工程 压力(语言学) 抗压强度 变形(气象学) 压缩(物理) 断裂(地质) 损伤容限 超材料 复合材料 数学 复合数 工程类 语言学 哲学 组合数学 光电子学
作者
Xinxin Wang,Xinwei Li,Zhendong Li,Zhonggang Wang,Wei Zhai
出处
期刊:Small [Wiley]
卷期号:20 (23) 被引量:23
标识
DOI:10.1002/smll.202307369
摘要

Abstract Characterized by periodic cellular unit cells, microlattices offer exceptional potential as lightweight and robust materials. However, their inherent periodicity poses the risk of catastrophic global failure. To address this limitation, a novel approach, that is to introduce microlattices composed of aperiodic unit cells inspired by Einstein's tile, where the orientation of cells never repeats in the same orientation is proposed. Experiments and simulations are conducted to validate the concept by comparing compressive responses of the aperiodic microlattices with those of common periodic microlattices. Indeed, the microlattices exhibit stable and progressive compressive deformation, contrasting with catastrophic fracture of periodic structures. At the same relative density, the microlattices outperform the periodic ones, exhibiting fracture strain, energy absorption, crushing stress efficiency, and smoothness coefficients at least 830%, 300%, 130%, and 160% higher, respectively. These improvements can be attributed to aperiodicity, where diverse failure thresholds exist locally due to varying strut angles and contact modes during compression. This effectively prevents both global fracture and abrupt stress drops. Furthermore, the aperiodic microlattice exhibits good damage tolerance with excellent deformation recoverability, retaining 76% ultimate stress post‐recovery at 30% compressive strain. Overall, a novel concept of adopting aperiodic cell arrangements to achieve damage‐tolerant microlattice metamaterials is presented.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
会化蝶完成签到,获得积分10
刚刚
1秒前
2秒前
碧阳的尔风完成签到,获得积分10
3秒前
hhh完成签到,获得积分10
4秒前
ZWQ发布了新的文献求助10
4秒前
4秒前
XYH发布了新的文献求助10
6秒前
10秒前
11秒前
Air应助ZWQ采纳,获得20
11秒前
11秒前
11秒前
_XXxxXX_完成签到,获得积分20
13秒前
15秒前
16秒前
_XXxxXX_发布了新的文献求助10
16秒前
fubaizaib发布了新的文献求助20
16秒前
987654完成签到,获得积分10
17秒前
国家一级啃大瓜表演艺术家完成签到,获得积分10
17秒前
Zenglongying发布了新的文献求助10
18秒前
杨阳洋发布了新的文献求助10
19秒前
987654发布了新的文献求助10
20秒前
一只想做科研的狗完成签到,获得积分10
20秒前
21秒前
彩色黑米完成签到 ,获得积分10
23秒前
粽叶完成签到 ,获得积分10
23秒前
Cu完成签到,获得积分10
23秒前
24秒前
凤梨完成签到,获得积分10
24秒前
所所应助fd163c采纳,获得10
25秒前
26秒前
图图完成签到,获得积分10
27秒前
27秒前
28秒前
28秒前
冰雪融化关注了科研通微信公众号
28秒前
Aurora完成签到,获得积分10
29秒前
gmjinfeng完成签到,获得积分0
29秒前
30秒前
高分求助中
The organometallic chemistry of the transition metals 7th 666
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Handbook of Laboratory Animal Science 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
What’s the Evidence? An Investigation into Teacher Quality 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3701476
求助须知:如何正确求助?哪些是违规求助? 3251723
关于积分的说明 9875992
捐赠科研通 2963699
什么是DOI,文献DOI怎么找? 1625252
邀请新用户注册赠送积分活动 769908
科研通“疑难数据库(出版商)”最低求助积分说明 742608