Predefined-time sliding mode control based on exact time disturbance observer for second-order systems with matched and mismatched disturbances

控制理论(社会学) 稳健性(进化) 滑模控制 国家观察员 趋同(经济学) 计算机科学 控制器(灌溉) 李雅普诺夫函数 控制(管理) 非线性系统 人工智能 生物化学 化学 物理 量子力学 生物 农学 经济 基因 经济增长
作者
Zhongze Cai,Guhao Sun,Qingshuang Zeng
出处
期刊:Transactions of the Institute of Measurement and Control [SAGE]
卷期号:46 (10): 1871-1884
标识
DOI:10.1177/01423312231198400
摘要

This paper’s primary motivation is to present a globally predefined-time sliding mode control (PtSMC) strategy to stabilize a class of second-order systems subjected to matched and mismatched disturbances. To achieve this, the paper proposes a new exact time disturbance observer (DOB) based on a terminal time regulator, which accurately estimates the disturbances within a prescribed time, effectively preventing the system state from escaping to infinity due to high gains and overestimation. In addition, a new predefined-time sliding mode variable with the estimation of DOB is developed to ensure a predefined-time convergence on the sliding mode phase against mismatched disturbances. The proposed DOB-based technique can alleviate the chattering resulting from the use of an overestimated gain, in contrast to the controller without employing a DOB. Furthermore, a predefined-time reaching law is introduced to guarantee a global predefined-time convergence. This paper establishes the stability of the disturbed second-order system under the proposed controller through strict Lyapunov analysis. The novelty of the proposed method lies in its global predefined-time convergence, chattering-reduced properties and robustness against matched and mismatched disturbances. Finally, numerical simulations and application examples validate the proposed methodology’s effectiveness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pluto应助科研通管家采纳,获得10
刚刚
小二郎应助科研通管家采纳,获得10
刚刚
刚刚
田様应助科研通管家采纳,获得10
刚刚
单复天完成签到,获得积分10
1秒前
1秒前
jgy应助科研通管家采纳,获得30
1秒前
1秒前
大模型应助科研通管家采纳,获得10
1秒前
shouyu29应助科研通管家采纳,获得10
1秒前
NexusExplorer应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
小蘑菇应助科研通管家采纳,获得10
1秒前
上官若男应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
小二郎应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
乐乐应助科研通管家采纳,获得10
2秒前
慕青应助科研通管家采纳,获得10
2秒前
yx发布了新的文献求助10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
bkagyin应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
易安完成签到 ,获得积分10
3秒前
3秒前
招财不肥发布了新的文献求助10
3秒前
Hello应助1111采纳,获得10
4秒前
lwei完成签到,获得积分20
4秒前
白蕲发布了新的文献求助10
4秒前
cindy发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
5秒前
6秒前
笑笑完成签到,获得积分10
6秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762