Pan-sharpening via intrinsic decomposition knowledge distillation

锐化 计算机科学 人工智能 多光谱图像 组分(热力学) 全色胶片 计算机视觉 模式识别(心理学) 物理 热力学
作者
Jiaming Wang,Qiang Zhang,Xiao Huang,Ruiqian Zhang,Xitong Chen,Tao Lü
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:149: 110247-110247
标识
DOI:10.1016/j.patcog.2023.110247
摘要

Existing deep learning-based pan-sharpening strategies mainly involve the fusion of panchromatic and multispectral (MS) information at both the pixel and feature levels. In this paper, we hypothesize that the MS image can be expressed as the multiplication of reflectance and illumination components, and that the reflection components of low-resolution (LR) MS and high-resolution (HR) MS images are invariant. Here, the spectral reflection component can effectively describe the spectral response of an object, while the illumination component can effectively describe its texture. Based on this hypothesis, we propose a novel and concise pan-sharpening framework called intrinsic decomposition knowledge distillation. Specifically, the teacher network decomposes the HR MS image into reflectance and illumination components, which are then combined in the student network with the reflectance component and the enhanced illumination component from LR MS to reconstruct the pan-sharpened image. To approximate the component distributions from the teacher network, we introduce a novel three-stage knowledge distillation strategy that can transfer knowledge about the relationships between components and constrain the student network. Our quantitative and qualitative comparisons demonstrate the reasonableness of our hypothesis and the effectiveness of our proposed method in significantly improving perception quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lvy发布了新的文献求助10
1秒前
早早干饭应助冰魄落叶采纳,获得10
1秒前
学术嫪毐发布了新的文献求助10
2秒前
2秒前
科研通AI2S应助mmyhn采纳,获得10
2秒前
3秒前
sunc发布了新的文献求助30
3秒前
4秒前
英俊的铭应助聪明的元枫采纳,获得10
4秒前
归尘应助王小迪采纳,获得10
4秒前
5秒前
李可汗发布了新的文献求助10
5秒前
诗轩完成签到,获得积分20
5秒前
王凯伦完成签到,获得积分10
5秒前
5秒前
6秒前
嗝嗝完成签到,获得积分10
6秒前
111发布了新的文献求助10
6秒前
Lychee发布了新的文献求助10
6秒前
6秒前
丘比特应助SKD采纳,获得10
6秒前
熠熠完成签到,获得积分10
6秒前
Hommand_藏山完成签到,获得积分10
7秒前
张萌洁发布了新的文献求助10
7秒前
8秒前
8秒前
松果完成签到,获得积分10
8秒前
8秒前
英俊水池完成签到,获得积分10
9秒前
9秒前
9秒前
一个爱吃爱睡的团子完成签到,获得积分10
9秒前
共享精神应助梅TiAmo采纳,获得10
9秒前
内向的台灯完成签到,获得积分10
10秒前
伍秋望完成签到,获得积分10
10秒前
11秒前
HM发布了新的文献求助10
12秒前
12秒前
美好幻灵发布了新的文献求助10
12秒前
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960462
求助须知:如何正确求助?哪些是违规求助? 3506587
关于积分的说明 11131436
捐赠科研通 3238853
什么是DOI,文献DOI怎么找? 1789898
邀请新用户注册赠送积分活动 872032
科研通“疑难数据库(出版商)”最低求助积分说明 803118