亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Applying deep learning to real-time UAV-based forest monitoring: Leveraging multi-sensor imagery for improved results

计算机科学 RGB颜色模型 人工智能 深度学习 透视图(图形) 计算机视觉 测距 频道(广播) 目标检测 实时计算 遥感 模式识别(心理学) 电信 地质学
作者
T.R. Marques,Samuel Carreira,Rolando Miragaia,João Ramos,Ántónio Pereira
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:245: 123107-123107 被引量:6
标识
DOI:10.1016/j.eswa.2023.123107
摘要

Rising global fire incidents necessitate effective solutions, with forest surveillance emerging as a crucial strategy. This paper proposes a complete solution using technology that integrates visible and infrared spectrum images through Unmanned Aerial Vehicles (UAVs) for enhanced detection of people and vehicles in forest environments. Unlike existing computer vision models relying on single-sensor imagery, this approach overcomes limitations posed by limited spectrum coverage, particularly addressing challenges in low-light conditions, fog, or smoke. The developed 4-channel model uses both types of images to take advantage of the strengths of each one simultaneously. This article presents the development and implementation of a solution for forest monitoring ranging from the transmission of images captured by a UAV to their analysis with an object detection model without human intervention. This model consists of a new version of the YOLOv5 (You Only Look Once) architecture. After the model analyzes the images, the results can be observed on a web platform on any device, anywhere in the world. For the model training, a dataset with thermal and visible images from the aerial perspective was captured with a UAV. From the development of this proposal, a new 4-channel model was created, presenting a substantial increase in precision and mAP (Mean Average Precision) metrics compared to traditional SOTA (state-of-the-art) models that only make use of red, green, and blue (RGB) images. Allied with the increase in precision, we confirmed the hypothesis that our model would perform better in conditions unfavorable to RGB images, identifying objects in situations with low light and reduced visibility with partial occlusions. With the model’s training using our dataset, we observed a significant increase in the model’s performance for images in the aerial perspective. This study introduces a modular system architecture featuring key modules: multisensor image capture, transmission, processing, analysis, and results presentation. Powered by an innovative object detection deep-learning model, these components collaborate to enable real-time, efficient, and distributed forest monitoring across diverse environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
凤飞舞蝶发布了新的文献求助10
1分钟前
完美世界应助zchchem采纳,获得10
2分钟前
2分钟前
zchchem发布了新的文献求助10
2分钟前
慕斯发布了新的文献求助10
3分钟前
zchchem完成签到,获得积分10
3分钟前
慕斯发布了新的文献求助10
4分钟前
傻傻的哈密瓜完成签到,获得积分10
5分钟前
さくま完成签到,获得积分10
6分钟前
fengxi发布了新的文献求助10
7分钟前
希勤发布了新的文献求助30
7分钟前
xwx发布了新的文献求助10
7分钟前
毓香谷的春天完成签到 ,获得积分10
7分钟前
fengxi完成签到,获得积分10
7分钟前
7分钟前
aq发布了新的文献求助10
7分钟前
aq完成签到,获得积分10
8分钟前
Grace完成签到 ,获得积分10
9分钟前
深情安青应助科研通管家采纳,获得10
9分钟前
spark810发布了新的文献求助10
9分钟前
9分钟前
TXZ06完成签到,获得积分10
10分钟前
颢懿完成签到 ,获得积分10
10分钟前
10分钟前
10分钟前
10分钟前
还单身的寒云完成签到,获得积分10
10分钟前
隐形曼青应助安详水壶采纳,获得10
10分钟前
安详水壶完成签到,获得积分20
11分钟前
11分钟前
北斗HH完成签到,获得积分10
11分钟前
安详水壶发布了新的文献求助10
11分钟前
13分钟前
顾矜应助希勤采纳,获得10
13分钟前
Benhnhk21完成签到,获得积分10
14分钟前
Milton_z完成签到 ,获得积分10
14分钟前
14分钟前
paperwork完成签到,获得积分10
15分钟前
15分钟前
希勤发布了新的文献求助10
15分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
XAFS for Everyone (2nd Edition) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3133956
求助须知:如何正确求助?哪些是违规求助? 2784836
关于积分的说明 7768660
捐赠科研通 2440205
什么是DOI,文献DOI怎么找? 1297291
科研通“疑难数据库(出版商)”最低求助积分说明 624911
版权声明 600791