Applying deep learning to real-time UAV-based forest monitoring: Leveraging multi-sensor imagery for improved results

计算机科学 RGB颜色模型 人工智能 深度学习 透视图(图形) 计算机视觉 测距 频道(广播) 目标检测 实时计算 遥感 模式识别(心理学) 电信 地质学
作者
T.R. Marques,Samuel Carreira,Rolando Miragaia,João Ramos,Ántónio Pereira
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:245: 123107-123107 被引量:6
标识
DOI:10.1016/j.eswa.2023.123107
摘要

Rising global fire incidents necessitate effective solutions, with forest surveillance emerging as a crucial strategy. This paper proposes a complete solution using technology that integrates visible and infrared spectrum images through Unmanned Aerial Vehicles (UAVs) for enhanced detection of people and vehicles in forest environments. Unlike existing computer vision models relying on single-sensor imagery, this approach overcomes limitations posed by limited spectrum coverage, particularly addressing challenges in low-light conditions, fog, or smoke. The developed 4-channel model uses both types of images to take advantage of the strengths of each one simultaneously. This article presents the development and implementation of a solution for forest monitoring ranging from the transmission of images captured by a UAV to their analysis with an object detection model without human intervention. This model consists of a new version of the YOLOv5 (You Only Look Once) architecture. After the model analyzes the images, the results can be observed on a web platform on any device, anywhere in the world. For the model training, a dataset with thermal and visible images from the aerial perspective was captured with a UAV. From the development of this proposal, a new 4-channel model was created, presenting a substantial increase in precision and mAP (Mean Average Precision) metrics compared to traditional SOTA (state-of-the-art) models that only make use of red, green, and blue (RGB) images. Allied with the increase in precision, we confirmed the hypothesis that our model would perform better in conditions unfavorable to RGB images, identifying objects in situations with low light and reduced visibility with partial occlusions. With the model’s training using our dataset, we observed a significant increase in the model’s performance for images in the aerial perspective. This study introduces a modular system architecture featuring key modules: multisensor image capture, transmission, processing, analysis, and results presentation. Powered by an innovative object detection deep-learning model, these components collaborate to enable real-time, efficient, and distributed forest monitoring across diverse environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
muyan完成签到 ,获得积分10
2秒前
2秒前
3秒前
2y发布了新的文献求助10
4秒前
QiiiMengfan发布了新的文献求助10
4秒前
yang发布了新的文献求助10
5秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
SYLH应助霏166采纳,获得20
6秒前
pluto应助张雯思采纳,获得10
7秒前
汉堡包应助张雯思采纳,获得10
7秒前
核桃应助张雯思采纳,获得10
7秒前
核桃应助张雯思采纳,获得10
7秒前
9秒前
Cumin发布了新的文献求助10
10秒前
感动背包发布了新的文献求助30
11秒前
theseus完成签到,获得积分10
13秒前
Owen应助yang采纳,获得10
15秒前
15秒前
15秒前
小狗不是抠脚兵完成签到,获得积分10
17秒前
熊啊小明关注了科研通微信公众号
18秒前
欢呼善斓发布了新的文献求助10
18秒前
yyw完成签到 ,获得积分10
19秒前
郑烨发布了新的文献求助10
19秒前
22秒前
yang完成签到,获得积分10
23秒前
25秒前
可爱的函函应助满眼星辰采纳,获得10
26秒前
26秒前
2y完成签到,获得积分10
27秒前
bkagyin应助吾问无为谓啊采纳,获得10
28秒前
李帅发布了新的文献求助10
29秒前
Ginkgo发布了新的文献求助10
29秒前
感动背包完成签到,获得积分10
30秒前
该饮茶了发布了新的文献求助10
30秒前
不能说的秘密完成签到,获得积分10
31秒前
舒克完成签到,获得积分10
32秒前
木木应助lovekobe采纳,获得10
33秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979693
求助须知:如何正确求助?哪些是违规求助? 3523666
关于积分的说明 11218291
捐赠科研通 3261174
什么是DOI,文献DOI怎么找? 1800485
邀请新用户注册赠送积分活动 879103
科研通“疑难数据库(出版商)”最低求助积分说明 807167