地质学
微震
岩体分类
发掘
采矿工程
岩土工程
失效机理
岩石学
地震学
结构工程
工程类
作者
Jinshuai Zhao,Shuqian Duan,Bingrui Chen,Lei Li,Chengxiang Yang,Pengxiang Li,Guofeng Liu
标识
DOI:10.1016/j.soildyn.2023.108439
摘要
Reasonable and accurate identification of the failure mechanism of rock masses is of great significance for achieving a comprehensive and thorough understanding of the fracture process in underground caverns under high geostress. Sophisticated microseismic (MS) monitoring was established in underground cavern groups to capture the excavation-induced microfracture signals of intact rock masses and rock masses with weak interlayer zones (WIZs). To clarify the mechanical mechanisms controlling the surrounding rock failure modes, the moment tensor inversion method is adopted to fully reveal the fracture types and focal mechanism solutions (strike, dip and rake) of the rock masses. The spatial distribution of the MS events shows that the excavation-induced microfractures of intact rock masses are concentrated in the working face of underground intersecting chambers. The fracture mechanisms of intact rock masses are dominated by tensile fracturing. Compared with those in intact rock masses, the microfractures induced by excavation in rock masses with WIZ form a strip-like cluster area along the WIZ, and the proportion of shear fractures is significantly higher. The moment tensor method quantitatively reveals the failure mechanism of excavation-induced microseismicity of rock masses with complex geological conditions.
科研通智能强力驱动
Strongly Powered by AbleSci AI