ICA-based Individualized Differential Structure Similarity Networks for Predicting Symptom Scores in Adolescents with Major Depressive Disorder

重性抑郁障碍 人工智能 心理学 心情 相似性(几何) 神经影像学 计算机科学 模式识别(心理学) 临床心理学 神经科学 图像(数学)
作者
Xiang Li,Ming Xu,Rongtao Jiang,Xuemei Li,Vince D. Calhoun,Xinyu Zhou,Jing Sui
标识
DOI:10.1109/embc40787.2023.10340456
摘要

Major depressive disorder (MDD) is a complex mood disorder characterized by persistent and overwhelming depression. Previous studies have identified large scale structural brain alterations in MDD, yet most are group analyses with atlas-parcellated anatomical regions. Here we proposed a method to measure individual difference by independent component analysis (ICA)-based individual difference structural similarity network (IDSSN). This approach provided a data-adaptive, atlas-free solution that can be applied to new individual subjects. Specifically, we constructed individualized whole-brain structural covariance networks based on network perturbation approach using spatially constrained ICA. First, a set of benchmark independent components (ICs) were generated using gray matter volume (GMV) from all healthy controls. Then individual heterogeneity was obtained by calculating differences and other similarity metrics between ICs derived from "each one patient + all controls" and the benchmark ICs, resulting in 32 imaging features and structural similarity networks for each patient, which can be used for predicting multiple clinical symptoms. We estimated IDSSN for 189 adolescent MDD patients aged 10-20 years and compared them to 112 healthy adolescents. We tested their predictability of the Hamilton Anxiety Scale , the 17-item Hamilton Depression Scale and six clinical syndromes using connectome-based predictive modeling. The prediction results showed that ICA-based IDSSN features reveal more disease-specific information than those using other brain templates. We also found that depression-associated networks mainly involved the default-mode network and visual network. In conclusion, our study proposed an adaptive method that improves the ability to detect GMV deviations and specificity between one individual patient and healthy groups, providing a new perspectives and insights for evaluating individual-level clinical heterogeneity based on brain structures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lhmily完成签到,获得积分20
1秒前
科研通AI2S应助工藤新一采纳,获得10
2秒前
3秒前
含蓄妖丽完成签到 ,获得积分10
3秒前
标致雁菡发布了新的文献求助10
3秒前
4秒前
WZWMLF应助花花采纳,获得10
4秒前
5秒前
6秒前
wdwd完成签到,获得积分10
9秒前
喔喔佳佳L发布了新的文献求助10
9秒前
杳鸢应助czx采纳,获得10
9秒前
雪花飞发布了新的文献求助10
10秒前
balko完成签到,获得积分10
10秒前
astiria发布了新的文献求助10
10秒前
10秒前
无名老大应助煤球精灵bb采纳,获得10
10秒前
11秒前
wjx发布了新的文献求助30
11秒前
传奇3应助远方采纳,获得10
12秒前
怡然奄应助ZHOU采纳,获得10
13秒前
香菜完成签到,获得积分10
13秒前
Wayne66完成签到,获得积分10
14秒前
工藤新一完成签到,获得积分10
14秒前
无名老大应助哭泣的采波采纳,获得10
14秒前
科研通AI2S应助哭泣的采波采纳,获得10
14秒前
俞晞完成签到,获得积分10
14秒前
Lllll发布了新的文献求助10
14秒前
15秒前
16秒前
含蓄妖丽发布了新的文献求助10
16秒前
希望天下0贩的0应助xxyqddx采纳,获得10
16秒前
Emma施施完成签到,获得积分10
16秒前
16秒前
17秒前
17秒前
Yifan2024应助梅梅哒采纳,获得30
17秒前
HuanChen完成签到,获得积分10
18秒前
Lxx完成签到,获得积分10
19秒前
19秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Agenda-setting and journalistic translation: The New York Times in English, Spanish and Chinese 1000
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
Foucault's Technologies Another Way of Cutting Reality 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3390911
求助须知:如何正确求助?哪些是违规求助? 3002258
关于积分的说明 8802821
捐赠科研通 2688843
什么是DOI,文献DOI怎么找? 1472779
科研通“疑难数据库(出版商)”最低求助积分说明 681153
邀请新用户注册赠送积分活动 673972