已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Time-frequency supervised contrastive learning via pseudo-labeling: An unsupervised domain adaptation network for rolling bearing fault diagnosis under time-varying speeds

计算机科学 人工智能 模式识别(心理学) 分类器(UML) 特征提取 频域 自编码 特征学习 深度学习 语音识别 机器学习 计算机视觉
作者
Bin Pang,Qiuhai Liu,Zhenduo Sun,Zhenli Xu,Ziyang Hao
出处
期刊:Advanced Engineering Informatics [Elsevier]
卷期号:59: 102304-102304 被引量:33
标识
DOI:10.1016/j.aei.2023.102304
摘要

The varying speed can cause the significant data distribution shift of bearings, making it difficult for deep learning-based bearing fault diagnosis models to ensure good generalization. Domain adaptation methods have been developed to address the domain shifts, while they struggle with the class-invariant features extraction under variable speed. Accordingly, a time–frequency supervised contrastive learning framework (TF-SupCon) is proposed for unsupervised cross-speed fault diagnosis of bearing. TF-SupCon adopts a pre-training-downstream task framework that aims to extract speed immune class-invariant features. During the pre-training phase, the physical consistency of the time-domain information and the frequency-domain information of bearing signal, a general feature applicable to different speed conditions, is learned in a targeted manner through supervised contrastive learning. Additionally, a K-Nearest Neighbor (KNN) algorithm based on cosine distance is designed to assign pseudo-labels to unlabeled target domain data, enabling cross-domain supervised contrastive pre-training. In the downstream task, unsupervised cross-domain fault diagnosis is performed using a KNN classifier and the speed immune time–frequency features by the trained encoders. It is worth noting that the same metric is maintained throughout both the pre-training phase and the downstream task, ensuring organic connection between the two stages. The superiority of TF-SupCon was demonstrated through a variety of fault diagnosis experiments conducted on both public and self-collected datasets. Lastly, the distances between time-domain and frequency-domain features of different categories were studied to verify the physical consistency between the features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小小小新发布了新的文献求助10
1秒前
lc发布了新的文献求助10
3秒前
5秒前
6秒前
6秒前
yaunshiqi发布了新的文献求助10
10秒前
12秒前
fwda1000完成签到 ,获得积分10
12秒前
机智柚子发布了新的文献求助10
15秒前
zhai完成签到,获得积分10
16秒前
草莓奶昔发布了新的文献求助10
18秒前
lc完成签到,获得积分20
19秒前
20秒前
20秒前
21秒前
xihuanni发布了新的文献求助10
21秒前
漂流发布了新的文献求助10
22秒前
yaunshiqi完成签到,获得积分10
22秒前
24秒前
三木大叔发布了新的文献求助10
25秒前
爱吃烤苕皮完成签到,获得积分10
25秒前
26秒前
26秒前
球球了发布了新的文献求助10
30秒前
细心笑卉发布了新的文献求助10
31秒前
32秒前
34秒前
Orange应助knowledge采纳,获得10
35秒前
SciGPT应助默默的三问采纳,获得10
35秒前
Jasper应助虚拟的绿蕊采纳,获得10
36秒前
希望天下0贩的0应助zkg采纳,获得50
36秒前
jovrtic发布了新的文献求助30
37秒前
37秒前
9752249完成签到,获得积分10
38秒前
zzz完成签到 ,获得积分10
39秒前
07应助三木大叔采纳,获得10
41秒前
汉堡包应助三木大叔采纳,获得10
41秒前
42秒前
9752249发布了新的文献求助10
42秒前
难搞哦发布了新的文献求助10
43秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3307135
求助须知:如何正确求助?哪些是违规求助? 2940891
关于积分的说明 8499375
捐赠科研通 2615081
什么是DOI,文献DOI怎么找? 1428662
科研通“疑难数据库(出版商)”最低求助积分说明 663482
邀请新用户注册赠送积分活动 648337