Predicting Antiseizure Medication Treatment in Children with Rare Tuberous Sclerosis Complex–Related Epilepsy Using Deep Learning

结节性硬化 医学 癫痫 流体衰减反转恢复 儿科 队列 磁共振成像 放射科 内科学 精神科
作者
Haifeng Wang,Zhanqi Hu,Dian Jiang,Rongbo Lin,Cailei Zhao,Xia Zhao,Yihang Zhou,Yanjie Zhu,Hongwu Zeng,Dong Liang,Jianxiang Liao,Zhicheng Li
出处
期刊:American Journal of Neuroradiology [American Society of Neuroradiology]
卷期号:44 (12): 1373-1383 被引量:5
标识
DOI:10.3174/ajnr.a8053
摘要

BACKGROUND AND PURPOSE:

Tuberous sclerosis complex disease is a rare, multisystem genetic disease, but appropriate drug treatment allows many pediatric patients to have positive outcomes. The purpose of this study was to predict the effectiveness of antiseizure medication treatment in children with tuberous sclerosis complex–related epilepsy.

MATERIALS AND METHODS:

We conducted a retrospective study involving 300 children with tuberous sclerosis complex–related epilepsy. The study included the analysis of clinical data and T2WI and FLAIR images. The clinical data consisted of sex, age of onset, age at imaging, infantile spasms, and antiseizure medication numbers. To forecast antiseizure medication treatment, we developed a multitechnique deep learning method called WAE-Net. This method used multicontrast MR imaging and clinical data. The T2WI and FLAIR images were combined as FLAIR3 to enhance the contrast between tuberous sclerosis complex lesions and normal brain tissues. We trained a clinical data-based model using a fully connected network with the above-mentioned variables. After that, a weighted-average ensemble network built from the ResNet3D architecture was created as the final model.

RESULTS:

The experiments had shown that age of onset, age at imaging, infantile spasms, and antiseizure medication numbers were significantly different between the 2 drug-treatment outcomes (P < .05). The hybrid technique of FLAIR3 could accurately localize tuberous sclerosis complex lesions, and the proposed method achieved the best performance (area under the curve = 0.908 and accuracy of 0.847) in the testing cohort among the compared methods.

CONCLUSIONS:

The proposed method could predict antiseizure medication treatment of children with rare tuberous sclerosis complex–related epilepsy and could be a strong baseline for future studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
整齐星月完成签到,获得积分10
1秒前
脑洞疼应助33采纳,获得10
1秒前
cdercder应助rcrc111采纳,获得30
1秒前
zhongu应助轻松乐枫采纳,获得10
2秒前
爆米花应助soso1010采纳,获得10
2秒前
astr发布了新的文献求助10
2秒前
辉哥发布了新的文献求助10
3秒前
3秒前
小赞发布了新的文献求助10
4秒前
4秒前
4秒前
娃哈哈发布了新的文献求助10
5秒前
乱世的土豆完成签到,获得积分10
5秒前
5秒前
思源应助明月采纳,获得10
6秒前
hhh发布了新的文献求助10
6秒前
受伤的碧曼完成签到,获得积分10
6秒前
moonnight完成签到,获得积分10
6秒前
rcrc111完成签到 ,获得积分10
8秒前
super发布了新的文献求助10
9秒前
玻璃杯完成签到,获得积分10
9秒前
无花果应助xiaokezhang采纳,获得10
9秒前
派大兴完成签到,获得积分10
9秒前
tzy6665发布了新的文献求助10
10秒前
10秒前
moonnight发布了新的文献求助10
10秒前
猪猪hero发布了新的文献求助10
10秒前
13秒前
14秒前
dwx关闭了dwx文献求助
15秒前
xiaofei应助汤圆好吃采纳,获得10
17秒前
17秒前
lovexz发布了新的文献求助10
17秒前
852应助ywt采纳,获得10
17秒前
Brady6发布了新的文献求助10
17秒前
辉哥完成签到,获得积分10
18秒前
FashionBoy应助轻松新之采纳,获得10
18秒前
xiaofei应助ZLY采纳,获得10
18秒前
背后的雪巧完成签到,获得积分10
18秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Devlopment of GaN Resonant Cavity LEDs 666
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3454924
求助须知:如何正确求助?哪些是违规求助? 3050185
关于积分的说明 9020562
捐赠科研通 2738826
什么是DOI,文献DOI怎么找? 1502304
科研通“疑难数据库(出版商)”最低求助积分说明 694480
邀请新用户注册赠送积分活动 693178