Predicting Antiseizure Medication Treatment in Children with Rare Tuberous Sclerosis Complex–Related Epilepsy Using Deep Learning

结节性硬化 医学 癫痫 流体衰减反转恢复 儿科 队列 磁共振成像 放射科 内科学 精神科
作者
Haifeng Wang,Zhanqi Hu,Dian Jiang,Rongbo Lin,Cailei Zhao,Xia Zhao,Yihang Zhou,Yanjie Zhu,Hongwu Zeng,Dong Liang,Jianxiang Liao,Zhicheng Li
出处
期刊:American Journal of Neuroradiology [American Society of Neuroradiology]
卷期号:44 (12): 1373-1383 被引量:5
标识
DOI:10.3174/ajnr.a8053
摘要

BACKGROUND AND PURPOSE:

Tuberous sclerosis complex disease is a rare, multisystem genetic disease, but appropriate drug treatment allows many pediatric patients to have positive outcomes. The purpose of this study was to predict the effectiveness of antiseizure medication treatment in children with tuberous sclerosis complex–related epilepsy.

MATERIALS AND METHODS:

We conducted a retrospective study involving 300 children with tuberous sclerosis complex–related epilepsy. The study included the analysis of clinical data and T2WI and FLAIR images. The clinical data consisted of sex, age of onset, age at imaging, infantile spasms, and antiseizure medication numbers. To forecast antiseizure medication treatment, we developed a multitechnique deep learning method called WAE-Net. This method used multicontrast MR imaging and clinical data. The T2WI and FLAIR images were combined as FLAIR3 to enhance the contrast between tuberous sclerosis complex lesions and normal brain tissues. We trained a clinical data-based model using a fully connected network with the above-mentioned variables. After that, a weighted-average ensemble network built from the ResNet3D architecture was created as the final model.

RESULTS:

The experiments had shown that age of onset, age at imaging, infantile spasms, and antiseizure medication numbers were significantly different between the 2 drug-treatment outcomes (P < .05). The hybrid technique of FLAIR3 could accurately localize tuberous sclerosis complex lesions, and the proposed method achieved the best performance (area under the curve = 0.908 and accuracy of 0.847) in the testing cohort among the compared methods.

CONCLUSIONS:

The proposed method could predict antiseizure medication treatment of children with rare tuberous sclerosis complex–related epilepsy and could be a strong baseline for future studies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Criminology34应助科研通管家采纳,获得10
刚刚
Criminology34应助科研通管家采纳,获得10
刚刚
刚刚
一一应助科研通管家采纳,获得10
刚刚
刚刚
乐乐应助科研通管家采纳,获得10
刚刚
Criminology34应助科研通管家采纳,获得10
刚刚
NexusExplorer应助科研通管家采纳,获得10
刚刚
李健的小迷弟应助嘿哟采纳,获得10
刚刚
阔达的小海豚完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
4秒前
4秒前
iNk应助给你吃一个屁采纳,获得20
4秒前
4秒前
仓鼠球发布了新的文献求助50
6秒前
量子星尘发布了新的文献求助10
6秒前
wch完成签到,获得积分20
7秒前
Una发布了新的文献求助30
8秒前
可靠的yi1发布了新的文献求助10
9秒前
情怀应助鱼仔采纳,获得10
9秒前
安琦发布了新的文献求助10
9秒前
9秒前
端庄的冰之完成签到,获得积分10
10秒前
李健应助无辜的亦云采纳,获得10
10秒前
11秒前
mmw完成签到,获得积分10
11秒前
14秒前
搜集达人应助yy采纳,获得10
14秒前
nn发布了新的文献求助10
15秒前
苗条念云发布了新的文献求助10
16秒前
Una完成签到,获得积分10
16秒前
李元亨发布了新的文献求助10
17秒前
虞不见王完成签到 ,获得积分10
18秒前
NanziLiu完成签到,获得积分10
18秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5728831
求助须知:如何正确求助?哪些是违规求助? 5314940
关于积分的说明 15315299
捐赠科研通 4875926
什么是DOI,文献DOI怎么找? 2619096
邀请新用户注册赠送积分活动 1568732
关于科研通互助平台的介绍 1525223