Predicting Antiseizure Medication Treatment in Children with Rare Tuberous Sclerosis Complex–Related Epilepsy Using Deep Learning

结节性硬化 医学 癫痫 流体衰减反转恢复 儿科 队列 磁共振成像 放射科 内科学 精神科
作者
Haifeng Wang,Zhanqi Hu,Dian Jiang,Rongbo Lin,Cailei Zhao,Xia Zhao,Yihang Zhou,Yanjie Zhu,Hongwu Zeng,Dong Liang,Jianxiang Liao,Zhicheng Li
出处
期刊:American Journal of Neuroradiology [American Society of Neuroradiology]
卷期号:44 (12): 1373-1383 被引量:5
标识
DOI:10.3174/ajnr.a8053
摘要

BACKGROUND AND PURPOSE:

Tuberous sclerosis complex disease is a rare, multisystem genetic disease, but appropriate drug treatment allows many pediatric patients to have positive outcomes. The purpose of this study was to predict the effectiveness of antiseizure medication treatment in children with tuberous sclerosis complex–related epilepsy.

MATERIALS AND METHODS:

We conducted a retrospective study involving 300 children with tuberous sclerosis complex–related epilepsy. The study included the analysis of clinical data and T2WI and FLAIR images. The clinical data consisted of sex, age of onset, age at imaging, infantile spasms, and antiseizure medication numbers. To forecast antiseizure medication treatment, we developed a multitechnique deep learning method called WAE-Net. This method used multicontrast MR imaging and clinical data. The T2WI and FLAIR images were combined as FLAIR3 to enhance the contrast between tuberous sclerosis complex lesions and normal brain tissues. We trained a clinical data-based model using a fully connected network with the above-mentioned variables. After that, a weighted-average ensemble network built from the ResNet3D architecture was created as the final model.

RESULTS:

The experiments had shown that age of onset, age at imaging, infantile spasms, and antiseizure medication numbers were significantly different between the 2 drug-treatment outcomes (P < .05). The hybrid technique of FLAIR3 could accurately localize tuberous sclerosis complex lesions, and the proposed method achieved the best performance (area under the curve = 0.908 and accuracy of 0.847) in the testing cohort among the compared methods.

CONCLUSIONS:

The proposed method could predict antiseizure medication treatment of children with rare tuberous sclerosis complex–related epilepsy and could be a strong baseline for future studies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
碧蓝的安露完成签到 ,获得积分10
1秒前
Ava应助bluesky采纳,获得10
1秒前
1秒前
充电宝应助割牙龈肉采纳,获得10
2秒前
2秒前
2秒前
3秒前
彩色亿先发布了新的文献求助10
4秒前
田様应助anwen采纳,获得10
4秒前
领导范儿应助kk采纳,获得10
4秒前
英俊的铭应助科研通管家采纳,获得10
4秒前
田様应助科研通管家采纳,获得10
4秒前
4秒前
华仔应助科研通管家采纳,获得10
4秒前
CodeCraft应助科研通管家采纳,获得10
4秒前
小蘑菇应助科研通管家采纳,获得10
4秒前
Jared应助科研通管家采纳,获得10
4秒前
4秒前
ding应助科研通管家采纳,获得10
4秒前
4秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
顾矜应助科研通管家采纳,获得10
5秒前
NexusExplorer应助科研通管家采纳,获得10
5秒前
研友_VZG7GZ应助科研通管家采纳,获得10
5秒前
Jasper应助科研通管家采纳,获得10
5秒前
斯文败类应助科研通管家采纳,获得10
5秒前
5秒前
Lucas应助科研通管家采纳,获得10
5秒前
寻道图强应助科研通管家采纳,获得50
5秒前
小二郎应助科研通管家采纳,获得20
5秒前
小蘑菇应助科研通管家采纳,获得10
5秒前
李健应助科研通管家采纳,获得10
5秒前
Jared应助科研通管家采纳,获得10
5秒前
传奇3应助科研通管家采纳,获得10
6秒前
山雀发布了新的文献求助10
6秒前
Lucas应助科研通管家采纳,获得10
6秒前
芋泥桃桃发布了新的文献求助10
6秒前
研友_Y59685完成签到 ,获得积分10
6秒前
wanci应助不安的冷荷采纳,获得10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557071
求助须知:如何正确求助?哪些是违规求助? 4642352
关于积分的说明 14667621
捐赠科研通 4583738
什么是DOI,文献DOI怎么找? 2514386
邀请新用户注册赠送积分活动 1488750
关于科研通互助平台的介绍 1459336