Predicting Antiseizure Medication Treatment in Children with Rare Tuberous Sclerosis Complex–Related Epilepsy Using Deep Learning

结节性硬化 医学 癫痫 流体衰减反转恢复 儿科 队列 磁共振成像 放射科 内科学 精神科
作者
Haifeng Wang,Zhanqi Hu,Dian Jiang,Rongbo Lin,Cailei Zhao,Xia Zhao,Yihang Zhou,Yanjie Zhu,Hongwu Zeng,Dong Liang,Jianxiang Liao,Zhicheng Li
出处
期刊:American Journal of Neuroradiology [American Society of Neuroradiology]
卷期号:44 (12): 1373-1383 被引量:5
标识
DOI:10.3174/ajnr.a8053
摘要

BACKGROUND AND PURPOSE:

Tuberous sclerosis complex disease is a rare, multisystem genetic disease, but appropriate drug treatment allows many pediatric patients to have positive outcomes. The purpose of this study was to predict the effectiveness of antiseizure medication treatment in children with tuberous sclerosis complex–related epilepsy.

MATERIALS AND METHODS:

We conducted a retrospective study involving 300 children with tuberous sclerosis complex–related epilepsy. The study included the analysis of clinical data and T2WI and FLAIR images. The clinical data consisted of sex, age of onset, age at imaging, infantile spasms, and antiseizure medication numbers. To forecast antiseizure medication treatment, we developed a multitechnique deep learning method called WAE-Net. This method used multicontrast MR imaging and clinical data. The T2WI and FLAIR images were combined as FLAIR3 to enhance the contrast between tuberous sclerosis complex lesions and normal brain tissues. We trained a clinical data-based model using a fully connected network with the above-mentioned variables. After that, a weighted-average ensemble network built from the ResNet3D architecture was created as the final model.

RESULTS:

The experiments had shown that age of onset, age at imaging, infantile spasms, and antiseizure medication numbers were significantly different between the 2 drug-treatment outcomes (P < .05). The hybrid technique of FLAIR3 could accurately localize tuberous sclerosis complex lesions, and the proposed method achieved the best performance (area under the curve = 0.908 and accuracy of 0.847) in the testing cohort among the compared methods.

CONCLUSIONS:

The proposed method could predict antiseizure medication treatment of children with rare tuberous sclerosis complex–related epilepsy and could be a strong baseline for future studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
balabala发布了新的文献求助10
刚刚
刚刚
091完成签到 ,获得积分10
刚刚
苹果蜗牛发布了新的文献求助10
1秒前
科研小垃圾完成签到,获得积分10
1秒前
3秒前
3秒前
皮划艇完成签到,获得积分20
3秒前
3秒前
酷波er应助苹果采纳,获得10
3秒前
方方发布了新的文献求助10
4秒前
4秒前
研友_VZG7GZ应助你可真行采纳,获得10
5秒前
花花发布了新的文献求助10
5秒前
SYLH应助XFaning采纳,获得10
5秒前
Lucas应助芝麻采纳,获得10
6秒前
苗条的凝雁完成签到,获得积分10
6秒前
小樊同学发布了新的文献求助10
6秒前
yihuifa完成签到 ,获得积分10
6秒前
爱思考的小笨笨完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
乐乐乐发布了新的文献求助10
7秒前
7秒前
8秒前
洪旺旺完成签到 ,获得积分10
8秒前
小兵完成签到,获得积分10
8秒前
qyh完成签到,获得积分10
9秒前
斯文败类应助blingl采纳,获得50
9秒前
9秒前
careS发布了新的文献求助10
10秒前
英姑应助usee采纳,获得10
10秒前
英俊的铭应助123采纳,获得10
10秒前
liubo发布了新的文献求助10
10秒前
害怕的问儿完成签到,获得积分10
10秒前
11秒前
111完成签到,获得积分10
12秒前
圆锥香蕉应助牛姐采纳,获得20
12秒前
无花果应助落后的沛柔采纳,获得10
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987223
求助须知:如何正确求助?哪些是违规求助? 3529513
关于积分的说明 11245651
捐赠科研通 3268108
什么是DOI,文献DOI怎么找? 1804027
邀请新用户注册赠送积分活动 881303
科研通“疑难数据库(出版商)”最低求助积分说明 808650