Prediction models for children/adolescents with obesity/overweight: A systematic review and meta-analysis

超重 医学 荟萃分析 肥胖 科克伦图书馆 一致性 儿童肥胖 体质指数 系统回顾 梅德林 环境卫生 内科学 政治学 法学
作者
Hao Gou,Huiling Song,Zhiqing Tian,Yan Liu
出处
期刊:Preventive Medicine [Elsevier]
卷期号:179: 107823-107823 被引量:4
标识
DOI:10.1016/j.ypmed.2023.107823
摘要

The incidence of obesity and overweight in children and adolescents is increasing worldwide and becomes a global health concern. This study aims to evaluate the accuracy of available prediction models in early identification of obesity and overweight in general children or adolescents and identify predictive factors for the models, thus provide a reference for subsequent development of risk prediction tools for obesity and overweight in children or adolescents. Related publications were obtained from several databases such as PubMed, Embase, Cochrane Library, and Web of Science from their inception to September 18th, 2022. The novel Prediction Model Risk of Bias Assessment Tool (PROBAST) was employed to assess the bias risk of the included studies. R4.2.0 and Stata15.1 softwares were used to conduct meta-analysis. This study involved 45 cross-sectional and/or prospective studies with 126 models. Meta-analyses showed that the overall pooled index of concordance (c-index) of prediction models for children/adolescents with obesity and overweight in the training set was 0.769 (95% CI 0.754–0.785) and 0.835(95% CI 0.792–0.879), respectively. Additionally, a large number of predictors were found to be related to children's lifestyles, such as sleep duration, sleep quality, and eating speed. In conclusions, prediction models can be employed to predict obesity/overweight in children and adolescents. Most predictors are controllable factors and are associated with lifestyle. Therefore, the prediction model serves as an excellent tool to formulate effective strategies for combating obesity/overweight in pediatric patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助wobuxin采纳,获得30
刚刚
刚刚
内向的飞松完成签到 ,获得积分10
刚刚
1秒前
三眼乌鸦发布了新的文献求助10
1秒前
蔡蔡发布了新的文献求助10
1秒前
小高发布了新的文献求助10
1秒前
万能图书馆应助yalan采纳,获得30
1秒前
解源发布了新的文献求助20
1秒前
2秒前
发嗲的飞机完成签到,获得积分10
2秒前
子车茗应助cjq采纳,获得10
2秒前
ymmmjjd完成签到,获得积分10
2秒前
3秒前
awwwer完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
科研小白发布了新的文献求助30
4秒前
帅不屈服完成签到,获得积分10
4秒前
蓝蓝蓝发布了新的文献求助10
5秒前
whatever应助无限无心采纳,获得30
5秒前
实现零完成签到 ,获得积分10
6秒前
6秒前
科目三应助武雨寒采纳,获得10
7秒前
7秒前
昨天发布了新的文献求助10
7秒前
BruceQ完成签到 ,获得积分10
8秒前
笔芯发布了新的文献求助10
8秒前
小九不太乖完成签到,获得积分10
8秒前
科研通AI2S应助七七采纳,获得10
8秒前
丘比特应助兰彻采纳,获得10
9秒前
魔幻蓉完成签到,获得积分10
9秒前
10秒前
卡卡发布了新的文献求助10
10秒前
倪永孝发布了新的文献求助10
10秒前
11秒前
结实珍发布了新的文献求助10
12秒前
天天快乐应助科研小白采纳,获得10
12秒前
12秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
Manual of Sewer Condition Classification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3123390
求助须知:如何正确求助?哪些是违规求助? 2773951
关于积分的说明 7720148
捐赠科研通 2429656
什么是DOI,文献DOI怎么找? 1290409
科研通“疑难数据库(出版商)”最低求助积分说明 621833
版权声明 600251