Research on End-to-end Tibetan Speech Recognition Acoustic Model Based on Multi-scale Features

计算机科学 语音识别 端到端原则 比例(比率) 声学模型 人工智能 语音处理 地理 地图学
作者
Li Wang,Dingguo Gao,Quzhen Suolang
标识
DOI:10.1109/prml59573.2023.10348322
摘要

Tibetan is one of the important languages of China's ethnic minorities, with rich cultural and historical value. However, Tibetan speech recognition is a challenging task due to the complexity of its phonetic features and the scarcity of data. Although some research results have been achieved, there is still a large room for improvement. In this paper, we propose an end-to-end Tibetan speech recognition acoustic model based on multiscale features, aiming at the problem that the non-encoder-decoder model widely used in the acoustic model of Tibetan speech recognition experiment leads to poor recognition effect of speech recognition task with prediction sequence information. We compare the baseline model based on the attention-based encoder-decoder speech recognition framework with four Tibetan speech recognition acoustic models, and then we improve the baseline model by using a hybrid loss function and multi-scale features for feature extraction. The experimental results show the feasibility of attention-based encoder-decoder model for Tibetan speech recognition, and that using hybrid loss function and multiscale features can improve the recognition performance of the model. The model proposed in this paper has the best effect in the recognition of Tibetan Lhasa dialect at present, and the word error rate of test set is only 15.04%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
cccc完成签到,获得积分10
刚刚
1秒前
1秒前
pluto应助pfuhh采纳,获得10
2秒前
负责长颈鹿完成签到,获得积分10
3秒前
meimei发布了新的文献求助10
3秒前
斯文败类应助自然的砖头采纳,获得10
3秒前
854fycchjh发布了新的文献求助30
4秒前
wshengnan完成签到,获得积分10
5秒前
6秒前
科研通AI5应助踏实雪一采纳,获得10
6秒前
7秒前
Wuhuhu应助安详的甜瓜采纳,获得10
7秒前
8秒前
乐乐应助负责长颈鹿采纳,获得10
8秒前
充电宝应助不胜玖采纳,获得50
8秒前
10秒前
Doc_Chen完成签到,获得积分20
10秒前
11秒前
可爱的函函应助liu采纳,获得10
11秒前
yuxiaoye关注了科研通微信公众号
12秒前
12秒前
12秒前
超帅的怡发布了新的文献求助10
14秒前
PGS完成签到,获得积分10
14秒前
科研通AI5应助高贵灵槐采纳,获得10
16秒前
16秒前
bankxiu发布了新的文献求助10
16秒前
翁雁丝完成签到 ,获得积分10
16秒前
Paris发布了新的文献求助10
17秒前
19秒前
伊酒应助mmyhn采纳,获得10
19秒前
20秒前
彤彤发布了新的文献求助40
20秒前
夏xia完成签到,获得积分10
21秒前
21秒前
qitengzhu完成签到,获得积分20
22秒前
22秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737545
求助须知:如何正确求助?哪些是违规求助? 3281271
关于积分的说明 10024202
捐赠科研通 2998002
什么是DOI,文献DOI怎么找? 1644955
邀请新用户注册赠送积分活动 782443
科研通“疑难数据库(出版商)”最低求助积分说明 749794