锌黄锡矿
材料科学
微观结构
成核
化学工程
奥斯特瓦尔德成熟
能量转换效率
结晶度
太阳能电池
纳米技术
冶金
捷克先令
光电子学
复合材料
化学
有机化学
工程类
作者
Hao Wei,Changcheng Cui,Yimeng Li,Zucheng Wu,Yijin Wei,Yaliang Han,Han Lin,Boyang Lu,Xiao Wang,Shuping Pang,Zhipeng Shao,Guanglei Cui
出处
期刊:Small
[Wiley]
日期:2023-12-15
卷期号:20 (19)
被引量:4
标识
DOI:10.1002/smll.202308266
摘要
Abstract Developing well‐crystallized light‐absorbing layers remains a formidable challenge in the progression of kesterite Cu 2 ZnSn(S,Se) 4 (CZTSSe) solar cells. A critical aspect of optimizing CZTSSe lies in accurately governing the high‐temperature selenization reaction. This process is intricate and demanding, with underlying mechanisms requiring further comprehension. This study introduces a precursor microstructure‐guided hetero‐nucleation regulation strategy for high‐quality CZTSSe absorbers and well‐performing solar cells. The alcoholysis of 2‐methoxyethanol (MOE) and the generation of high gas‐producing micelles by adding hydrogen chloride (HCl) as a proton additive into the precursor solution are successfully suppressed. This tailored modification of solution components reduces the emission of volatiles during baking, yielding a compact and dense precursor microstructure. The reduced‐roughness surface nurtures the formation of larger CZTSSe nuclei, accelerating the ensuing Ostwald ripening process. Ultimately, CZTSSe absorbers with enhanced crystallinity and diminished defects are fabricated, attaining an impressive 14.01% active‐area power conversion efficiency. The findings elucidate the influence of precursor microstructure on the selenization reaction process, paving a route for fabricating high‐quality kesterite CZTSSe films and high‐efficiency solar cells.
科研通智能强力驱动
Strongly Powered by AbleSci AI