Ni agglomeration and performance degradation of solid oxide fuel cell: A model-based quantitative study and microstructure optimization

材料科学 微观结构 阳极 集聚经济 粒子(生态学) 功率密度 化学工程 粒径 降级(电信) 冶金 电极 热力学 电子工程 功率(物理) 化学 物理 地质学 工程类 物理化学 海洋学
作者
Quanrong Fu,Chao Tian,Lianming Hun,Xin Wang,Zhiyi Li,Zhijun Liu,Wei Wei
出处
期刊:Energy [Elsevier]
卷期号:289: 129997-129997
标识
DOI:10.1016/j.energy.2023.129997
摘要

Nickel agglomeration poses a noteworthy impediment to the commercialization of SOFCs. A comprehensive coupled degradation model is established, encompassing a Ni-particle coarsening model, microstructural parameters, effective mesoscopic parameters, and various transport processes (mass/momentum/heat/charge/multi-species transports), and chemical/electrochemical reactions. The initial anode microstructural parameters are optimized by the comprehensive model and response surface method (RSM). Single-factor analysis shows that within the initial Ni-particle diameter (dNi(t=0)) range of 0.6–0.9 μm, a particle size ratio (R) of 1.0–1.5 between YSZ-particle and Ni-particle, and a solid-phase volume fraction of Ni-particle (ψNi) ranging from 0.35 to 0.55, SOFC demonstrates high power density and a reduced degradation rate. Using the single-factor results, RSM is employed for -anode microstructure optimization, specifying: dNi(t=0) = 0.7 μm, R = 1.0, and ψNi = 0.49. Correspondingly, the average power density at 0.6 V (PD¯0.6V) reaches 2828.5 W/m2, with a degradation rate (Vde) off 0.441 %/1000 h. In comparison to original microstructure parameters (dNi(t=0) = 0.6 μm, R = 1.0, ψNi = 0.4), the optimal SOFC exhibits a remarkable enhancement in electrical performance and durability, with an 11.9 % increase in PD¯0.6V and a 69 % reduction in Vde. The integration of the comprehensive model and RSM presents a promising strategy for predicting performance, refining operation condition, and optimizing electrode microstructure for long-term operating SOFC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
孤单的您发布了新的文献求助20
刚刚
香蕉觅云应助杨杨采纳,获得10
刚刚
赶紧毕业完成签到,获得积分10
刚刚
斯文败类应助HCT采纳,获得30
刚刚
1秒前
吴未完成签到,获得积分10
2秒前
aaa发布了新的文献求助20
2秒前
2秒前
石头发布了新的文献求助10
3秒前
绿野金完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
Akim应助werui采纳,获得10
4秒前
4秒前
4秒前
5秒前
5秒前
5秒前
汪汪的小可爱完成签到,获得积分10
5秒前
5秒前
深情安青应助月魂采纳,获得10
5秒前
5秒前
6秒前
lxz完成签到,获得积分20
6秒前
6秒前
1111111发布了新的文献求助10
6秒前
摇粒绒完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
111完成签到,获得积分10
7秒前
8秒前
刘明发布了新的文献求助10
8秒前
Gonna发布了新的文献求助10
8秒前
Iva发布了新的文献求助10
8秒前
花坂结衣完成签到,获得积分10
8秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
123发布了新的文献求助10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5727674
求助须知:如何正确求助?哪些是违规求助? 5309608
关于积分的说明 15311894
捐赠科研通 4875130
什么是DOI,文献DOI怎么找? 2618553
邀请新用户注册赠送积分活动 1568241
关于科研通互助平台的介绍 1524919