Uncovering the heterogeneous effects of depression on suicide risk conditioned by linguistic features: A double machine learning approach

萧条(经济学) 心理学 翻译 苦恼 临床心理学 自杀预防 精神科 毒物控制 医学 医疗急救 计算机科学 宏观经济学 经济 程序设计语言
作者
Sijia Li,Wei Pan,Paul Yip,Jing Wang,Wenwei Zhou,Tingshao Zhu
出处
期刊:Computers in Human Behavior [Elsevier]
卷期号:152: 108080-108080 被引量:13
标识
DOI:10.1016/j.chb.2023.108080
摘要

Depression has been identified as a risk factor for suicide, yet limited evidence has elucidated the underlying pathways linking depression to subsequent suicide risk. Therefore, we aimed to examine the psychological mechanisms that connect depression to suicide risk via linguistic characteristics on Weibo. We sampled 487,251 posts from 3196 users who belong to the depression super-topic community (DSTC) on Sina Weibo as the depression group, and 357,939 posts from 5167 active users as the control group. We employed the double machine learning method (DML) to estimate the impact of depression on suicide risk, and interpreted the pathways from depression to suicide risk using SHapley Additive exPlanations (SHAP) values and tree interpreters. The results indicated an 18% higher likelihood of suicide risk in the depression group compared to people without depression. The SHAP values further revealed that Exclusive (M = 0.029) was the most critical linguistic feature. Meanwhile, the three-depth tree interpreter illustrated that the high suicide risk subgroup of the depression group (N = 1196, CATE = 0.32 ± 0.04, 95%CI [0.20, 0.43]) was predicted by higher usage of Exclusive (>0.59) and Health (>-0.10). DML revealed pathways linking depression to suicide risk. The visualized tree interpreter showed cognitive complexity and physical distress might be positively associated with suicide risk in depressed populations. These findings have invigorated further investigation to elucidate the relationship between depression and suicide risk. Understanding the underlying mechanisms serves as a basis for future research on suicide prevention and treatment for individuals with depression.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小杨同学发布了新的文献求助10
刚刚
1秒前
1秒前
1秒前
alick发布了新的文献求助30
2秒前
wy18567337203发布了新的文献求助10
2秒前
Ava应助Ning_采纳,获得10
2秒前
hbhbj发布了新的文献求助10
2秒前
Jayee发布了新的文献求助10
2秒前
2秒前
FXY发布了新的文献求助10
2秒前
小二郎应助小脚丫采纳,获得10
2秒前
爱听歌的人达完成签到,获得积分10
3秒前
3秒前
iceice发布了新的文献求助10
4秒前
CodeCraft应助喜悦兰采纳,获得10
4秒前
蔡宇滔发布了新的文献求助10
4秒前
慕青应助善良高山采纳,获得10
4秒前
四爷发布了新的文献求助10
4秒前
小豆完成签到,获得积分10
5秒前
5秒前
在水一方应助科研通管家采纳,获得10
5秒前
Christal完成签到,获得积分20
5秒前
Bella完成签到,获得积分10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
5秒前
ccm应助科研通管家采纳,获得10
6秒前
Apple完成签到,获得积分10
6秒前
完美世界应助madison采纳,获得10
6秒前
小杭76应助科研通管家采纳,获得10
6秒前
天天快乐应助huaming采纳,获得10
6秒前
Jasper应助科研通管家采纳,获得10
6秒前
小杭76应助科研通管家采纳,获得10
6秒前
小杭76应助科研通管家采纳,获得10
7秒前
239287发布了新的文献求助10
7秒前
wxyshare应助科研通管家采纳,获得10
7秒前
8R60d8应助科研通管家采纳,获得10
7秒前
ccm应助科研通管家采纳,获得10
7秒前
zhabgyucheng完成签到,获得积分10
7秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Antihistamine substances. XXII; Synthetic antispasmodics. IV. Basic ethers derived from aliphatic carbinols and α-substituted benzyl alcohols 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5429839
求助须知:如何正确求助?哪些是违规求助? 4543201
关于积分的说明 14185830
捐赠科研通 4461332
什么是DOI,文献DOI怎么找? 2446068
邀请新用户注册赠送积分活动 1437256
关于科研通互助平台的介绍 1414290