Uncovering the heterogeneous effects of depression on suicide risk conditioned by linguistic features: A double machine learning approach

萧条(经济学) 心理学 翻译 苦恼 临床心理学 自杀预防 精神科 毒物控制 医学 医疗急救 计算机科学 宏观经济学 经济 程序设计语言
作者
Sijia Li,Wei Pan,Paul Yip,Jing Wang,Wenwei Zhou,Tingshao Zhu
出处
期刊:Computers in Human Behavior [Elsevier]
卷期号:152: 108080-108080 被引量:3
标识
DOI:10.1016/j.chb.2023.108080
摘要

Depression has been identified as a risk factor for suicide, yet limited evidence has elucidated the underlying pathways linking depression to subsequent suicide risk. Therefore, we aimed to examine the psychological mechanisms that connect depression to suicide risk via linguistic characteristics on Weibo. We sampled 487,251 posts from 3196 users who belong to the depression super-topic community (DSTC) on Sina Weibo as the depression group, and 357,939 posts from 5167 active users as the control group. We employed the double machine learning method (DML) to estimate the impact of depression on suicide risk, and interpreted the pathways from depression to suicide risk using SHapley Additive exPlanations (SHAP) values and tree interpreters. The results indicated an 18% higher likelihood of suicide risk in the depression group compared to people without depression. The SHAP values further revealed that Exclusive (M = 0.029) was the most critical linguistic feature. Meanwhile, the three-depth tree interpreter illustrated that the high suicide risk subgroup of the depression group (N = 1196, CATE = 0.32 ± 0.04, 95%CI [0.20, 0.43]) was predicted by higher usage of Exclusive (>0.59) and Health (>-0.10). DML revealed pathways linking depression to suicide risk. The visualized tree interpreter showed cognitive complexity and physical distress might be positively associated with suicide risk in depressed populations. These findings have invigorated further investigation to elucidate the relationship between depression and suicide risk. Understanding the underlying mechanisms serves as a basis for future research on suicide prevention and treatment for individuals with depression.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
研友_ngqoE8完成签到,获得积分10
1秒前
桐桐应助云_123采纳,获得10
2秒前
4秒前
一二发布了新的文献求助10
4秒前
Ava应助击飞采纳,获得10
7秒前
科研66666发布了新的文献求助10
11秒前
sxd20103316完成签到,获得积分10
11秒前
wwz应助俊逸亦云采纳,获得10
11秒前
12秒前
13秒前
15秒前
16秒前
靓丽的飞槐完成签到,获得积分10
16秒前
击飞发布了新的文献求助10
17秒前
李健的小迷弟应助一二采纳,获得10
18秒前
18秒前
大卢完成签到 ,获得积分10
19秒前
20秒前
chaserlife发布了新的文献求助10
21秒前
一只东北鸟完成签到 ,获得积分20
22秒前
云_123发布了新的文献求助10
22秒前
科研完成签到 ,获得积分10
22秒前
23秒前
CodeCraft应助冰棍采纳,获得10
25秒前
Kathy发布了新的文献求助10
26秒前
JamesPei应助李新悦采纳,获得10
27秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134943
求助须知:如何正确求助?哪些是违规求助? 2785901
关于积分的说明 7774393
捐赠科研通 2441736
什么是DOI,文献DOI怎么找? 1298162
科研通“疑难数据库(出版商)”最低求助积分说明 625079
版权声明 600825