Uncovering the heterogeneous effects of depression on suicide risk conditioned by linguistic features: A double machine learning approach

萧条(经济学) 心理学 翻译 苦恼 临床心理学 自杀预防 精神科 毒物控制 医学 医疗急救 计算机科学 宏观经济学 经济 程序设计语言
作者
Sijia Li,Wei Pan,Paul Yip,Jing Wang,Wenwei Zhou,Tingshao Zhu
出处
期刊:Computers in Human Behavior [Elsevier BV]
卷期号:152: 108080-108080 被引量:11
标识
DOI:10.1016/j.chb.2023.108080
摘要

Depression has been identified as a risk factor for suicide, yet limited evidence has elucidated the underlying pathways linking depression to subsequent suicide risk. Therefore, we aimed to examine the psychological mechanisms that connect depression to suicide risk via linguistic characteristics on Weibo. We sampled 487,251 posts from 3196 users who belong to the depression super-topic community (DSTC) on Sina Weibo as the depression group, and 357,939 posts from 5167 active users as the control group. We employed the double machine learning method (DML) to estimate the impact of depression on suicide risk, and interpreted the pathways from depression to suicide risk using SHapley Additive exPlanations (SHAP) values and tree interpreters. The results indicated an 18% higher likelihood of suicide risk in the depression group compared to people without depression. The SHAP values further revealed that Exclusive (M = 0.029) was the most critical linguistic feature. Meanwhile, the three-depth tree interpreter illustrated that the high suicide risk subgroup of the depression group (N = 1196, CATE = 0.32 ± 0.04, 95%CI [0.20, 0.43]) was predicted by higher usage of Exclusive (>0.59) and Health (>-0.10). DML revealed pathways linking depression to suicide risk. The visualized tree interpreter showed cognitive complexity and physical distress might be positively associated with suicide risk in depressed populations. These findings have invigorated further investigation to elucidate the relationship between depression and suicide risk. Understanding the underlying mechanisms serves as a basis for future research on suicide prevention and treatment for individuals with depression.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张大星完成签到 ,获得积分10
2秒前
秦屿发布了新的文献求助10
5秒前
ziwei完成签到 ,获得积分10
5秒前
Orange应助123asd采纳,获得10
6秒前
星辰大海应助123asd采纳,获得10
6秒前
6秒前
6秒前
Tohka完成签到 ,获得积分10
7秒前
科研通AI6应助dzh采纳,获得10
7秒前
一颗松应助马雪滢采纳,获得10
7秒前
7秒前
123别认出我完成签到,获得积分10
8秒前
义气的断秋完成签到,获得积分10
9秒前
9秒前
Red完成签到,获得积分10
10秒前
夏xx完成签到 ,获得积分10
11秒前
小一完成签到,获得积分10
11秒前
livo发布了新的文献求助10
11秒前
emeqwq发布了新的文献求助10
12秒前
Red发布了新的文献求助10
14秒前
Syun完成签到,获得积分10
15秒前
美丽的冰枫完成签到,获得积分10
16秒前
17秒前
科研通AI5应助归尘采纳,获得10
18秒前
emeqwq完成签到,获得积分10
18秒前
yy不是m完成签到,获得积分10
18秒前
无花果应助找找采纳,获得10
18秒前
124完成签到,获得积分10
19秒前
20秒前
Fe_001完成签到 ,获得积分10
21秒前
清脆以旋发布了新的文献求助10
21秒前
阔达白凡完成签到,获得积分10
21秒前
科研通AI6应助秦屿采纳,获得10
22秒前
刘玉凡发布了新的文献求助10
22秒前
livo完成签到,获得积分10
24秒前
Zjjj0812完成签到 ,获得积分10
25秒前
ghroth完成签到,获得积分10
26秒前
八嘎发布了新的文献求助10
26秒前
27秒前
Owen应助唠叨的冥王星采纳,获得10
34秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5130554
求助须知:如何正确求助?哪些是违规求助? 4332648
关于积分的说明 13498156
捐赠科研通 4169169
什么是DOI,文献DOI怎么找? 2285499
邀请新用户注册赠送积分活动 1286489
关于科研通互助平台的介绍 1227430