Uncovering the heterogeneous effects of depression on suicide risk conditioned by linguistic features: A double machine learning approach

萧条(经济学) 心理学 翻译 苦恼 临床心理学 自杀预防 精神科 毒物控制 医学 医疗急救 计算机科学 宏观经济学 经济 程序设计语言
作者
Sijia Li,Wei Pan,Paul Yip,Jing Wang,Wenwei Zhou,Tingshao Zhu
出处
期刊:Computers in Human Behavior [Elsevier]
卷期号:152: 108080-108080 被引量:11
标识
DOI:10.1016/j.chb.2023.108080
摘要

Depression has been identified as a risk factor for suicide, yet limited evidence has elucidated the underlying pathways linking depression to subsequent suicide risk. Therefore, we aimed to examine the psychological mechanisms that connect depression to suicide risk via linguistic characteristics on Weibo. We sampled 487,251 posts from 3196 users who belong to the depression super-topic community (DSTC) on Sina Weibo as the depression group, and 357,939 posts from 5167 active users as the control group. We employed the double machine learning method (DML) to estimate the impact of depression on suicide risk, and interpreted the pathways from depression to suicide risk using SHapley Additive exPlanations (SHAP) values and tree interpreters. The results indicated an 18% higher likelihood of suicide risk in the depression group compared to people without depression. The SHAP values further revealed that Exclusive (M = 0.029) was the most critical linguistic feature. Meanwhile, the three-depth tree interpreter illustrated that the high suicide risk subgroup of the depression group (N = 1196, CATE = 0.32 ± 0.04, 95%CI [0.20, 0.43]) was predicted by higher usage of Exclusive (>0.59) and Health (>-0.10). DML revealed pathways linking depression to suicide risk. The visualized tree interpreter showed cognitive complexity and physical distress might be positively associated with suicide risk in depressed populations. These findings have invigorated further investigation to elucidate the relationship between depression and suicide risk. Understanding the underlying mechanisms serves as a basis for future research on suicide prevention and treatment for individuals with depression.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
不忘初心完成签到,获得积分10
2秒前
喜悦山柳完成签到,获得积分20
2秒前
小芳芳完成签到 ,获得积分10
2秒前
3秒前
orixero应助lalala采纳,获得10
3秒前
熊猫完成签到,获得积分10
3秒前
ZZ完成签到,获得积分10
3秒前
科研人才完成签到 ,获得积分10
3秒前
大模型应助哇哇哇采纳,获得10
4秒前
小王发布了新的文献求助10
4秒前
王迪发布了新的文献求助10
5秒前
Milesma完成签到 ,获得积分10
6秒前
laowaikuan完成签到,获得积分10
6秒前
科研通AI2S应助熊猫采纳,获得10
7秒前
糊涂的元珊完成签到 ,获得积分0
7秒前
7秒前
陶醉抽屉完成签到,获得积分10
8秒前
8秒前
美满的初之完成签到,获得积分10
8秒前
乐乐应助辛勤芷天采纳,获得10
9秒前
贾福运发布了新的文献求助10
9秒前
Guai乖完成签到,获得积分10
9秒前
星城发布了新的文献求助10
10秒前
10秒前
阿尼拉姆完成签到,获得积分10
11秒前
畅学天下完成签到,获得积分10
12秒前
a502410600完成签到,获得积分10
12秒前
13秒前
liujianxin完成签到,获得积分20
13秒前
oyly完成签到 ,获得积分10
13秒前
13秒前
欣慰煎蛋完成签到,获得积分10
13秒前
kero完成签到,获得积分10
14秒前
哦哈哈完成签到 ,获得积分10
15秒前
16秒前
liiy完成签到,获得积分10
17秒前
木玄机完成签到,获得积分10
17秒前
陶醉抽屉发布了新的文献求助10
17秒前
贾福运完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5294519
求助须知:如何正确求助?哪些是违规求助? 4444365
关于积分的说明 13832957
捐赠科研通 4328428
什么是DOI,文献DOI怎么找? 2376121
邀请新用户注册赠送积分活动 1371451
关于科研通互助平台的介绍 1336662