已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Uncovering the heterogeneous effects of depression on suicide risk conditioned by linguistic features: A double machine learning approach

萧条(经济学) 心理学 翻译 苦恼 临床心理学 自杀预防 精神科 毒物控制 医学 医疗急救 计算机科学 宏观经济学 经济 程序设计语言
作者
Sijia Li,Wei Pan,Paul Yip,Jing Wang,Wenwei Zhou,Tingshao Zhu
出处
期刊:Computers in Human Behavior [Elsevier BV]
卷期号:152: 108080-108080 被引量:4
标识
DOI:10.1016/j.chb.2023.108080
摘要

Depression has been identified as a risk factor for suicide, yet limited evidence has elucidated the underlying pathways linking depression to subsequent suicide risk. Therefore, we aimed to examine the psychological mechanisms that connect depression to suicide risk via linguistic characteristics on Weibo. We sampled 487,251 posts from 3196 users who belong to the depression super-topic community (DSTC) on Sina Weibo as the depression group, and 357,939 posts from 5167 active users as the control group. We employed the double machine learning method (DML) to estimate the impact of depression on suicide risk, and interpreted the pathways from depression to suicide risk using SHapley Additive exPlanations (SHAP) values and tree interpreters. The results indicated an 18% higher likelihood of suicide risk in the depression group compared to people without depression. The SHAP values further revealed that Exclusive (M = 0.029) was the most critical linguistic feature. Meanwhile, the three-depth tree interpreter illustrated that the high suicide risk subgroup of the depression group (N = 1196, CATE = 0.32 ± 0.04, 95%CI [0.20, 0.43]) was predicted by higher usage of Exclusive (>0.59) and Health (>-0.10). DML revealed pathways linking depression to suicide risk. The visualized tree interpreter showed cognitive complexity and physical distress might be positively associated with suicide risk in depressed populations. These findings have invigorated further investigation to elucidate the relationship between depression and suicide risk. Understanding the underlying mechanisms serves as a basis for future research on suicide prevention and treatment for individuals with depression.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Xujiamin完成签到,获得积分10
1秒前
传奇3应助愉快的宛海采纳,获得10
3秒前
赵婧秀发布了新的文献求助80
4秒前
4秒前
wucl1990发布了新的文献求助10
4秒前
5秒前
WeiMooo发布了新的文献求助10
5秒前
研友_VZG7GZ应助自然静芙采纳,获得10
5秒前
小马甲应助虞美人采纳,获得10
7秒前
丁久洋发布了新的文献求助10
9秒前
吕凯强完成签到 ,获得积分10
9秒前
wucl1990完成签到,获得积分20
9秒前
xxxy完成签到,获得积分10
9秒前
可爱的函函应助Esther采纳,获得10
10秒前
李李完成签到,获得积分10
11秒前
12秒前
研友_656B85发布了新的文献求助30
12秒前
所所应助重要的夏烟采纳,获得10
14秒前
15秒前
Lucas应助汤圆采纳,获得10
17秒前
绺妙发布了新的文献求助10
17秒前
李健的小迷弟应助爻解采纳,获得10
18秒前
keke关注了科研通微信公众号
19秒前
19秒前
徐志豪发布了新的文献求助10
20秒前
Johnspeed完成签到,获得积分10
23秒前
Esther完成签到,获得积分10
24秒前
wanci应助菠cai采纳,获得10
24秒前
思源应助赵婧秀采纳,获得10
28秒前
mjsdx完成签到 ,获得积分10
29秒前
30秒前
CodeCraft应助zhixin采纳,获得10
33秒前
33秒前
赘婿应助徐志豪采纳,获得10
33秒前
爻解发布了新的文献求助10
35秒前
棠真完成签到 ,获得积分0
36秒前
小草blue完成签到,获得积分10
36秒前
xumengsuo发布了新的文献求助10
37秒前
38秒前
文艺丹琴完成签到,获得积分10
38秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968110
求助须知:如何正确求助?哪些是违规求助? 3513080
关于积分的说明 11166497
捐赠科研通 3248293
什么是DOI,文献DOI怎么找? 1794178
邀请新用户注册赠送积分活动 874903
科研通“疑难数据库(出版商)”最低求助积分说明 804629