概化理论
计算机科学
分割
背景(考古学)
特征(语言学)
集合(抽象数据类型)
过程(计算)
人工智能
领域(数学分析)
编码(集合论)
基础(证据)
图层(电子)
微调
图像(数学)
建筑
机器学习
模式识别(心理学)
程序设计语言
数学
量子力学
艺术
哲学
历史
数学分析
语言学
化学
考古
视觉艺术
生物
古生物学
统计
物理
有机化学
作者
Zhixiang Wei,Chen Lin,Yi Jin,Xiaoxiao Ma,Tianle Liu,P. Y. Lin,Ben Wang,Huaian Chen,Jinjin Zheng
出处
期刊:Cornell University - arXiv
日期:2023-01-01
标识
DOI:10.48550/arxiv.2312.04265
摘要
In this paper, we first assess and harness various Vision Foundation Models (VFMs) in the context of Domain Generalized Semantic Segmentation (DGSS). Driven by the motivation that Leveraging Stronger pre-trained models and Fewer trainable parameters for Superior generalizability, we introduce a robust fine-tuning approach, namely Rein, to parameter-efficiently harness VFMs for DGSS. Built upon a set of trainable tokens, each linked to distinct instances, Rein precisely refines and forwards the feature maps from each layer to the next layer within the backbone. This process produces diverse refinements for different categories within a single image. With fewer trainable parameters, Rein efficiently fine-tunes VFMs for DGSS tasks, surprisingly surpassing full parameter fine-tuning. Extensive experiments across various settings demonstrate that Rein significantly outperforms state-of-the-art methods. Remarkably, with just an extra 1% of trainable parameters within the frozen backbone, Rein achieves a mIoU of 68.1% on the Cityscapes, without accessing any real urban-scene datasets.Code is available at https://github.com/w1oves/Rein.git.
科研通智能强力驱动
Strongly Powered by AbleSci AI