Development of multi-sensor data fusion and in-process expert system for monitoring precision in thin wall lens barrel turning

机械加工 人工神经网络 均方误差 偏移量(计算机科学) 工程类 炸薯条 加速度计 机械工程 计算机科学 人工智能 数学 统计 操作系统 电气工程 程序设计语言
作者
Ke-Er Tang,Yin-Chung Huang,Chun‐Wei Liu
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:210: 111195-111195 被引量:1
标识
DOI:10.1016/j.ymssp.2024.111195
摘要

The thin-walled lens barrel is a crucial component in high-precision optical systems and must be machined with high dimensional accuracy and surface quality. However, in the machining of such lenses, variations in material removal rates and surface blemishes can stem from machining parameter settings, tool wear, chip tangling, and tool offset error, resulting in difficulties in controlling workpiece dimensions and surface quality. Consequently, manual inspections and troubleshooting are required, leading to labor-intensive procedures and unscheduled production disruptions that compromise efficiency. To address these challenges, this study developed an expert system based on multi-sensor data fusion for real-time thin-wall machining. Though the use of acoustic emission and three-axis accelerometer sensors installed on a turn-milling machine, pivotal machining parameters such as cutting speed, feed rate, and depth of cut were gathered and analyzed. Support vector regression and artificial neural network models were developed for monitoring material removal rates and tool and chip status, respectively. Principal component analysis was used to increase data efficiency. The outcomes were promising, with the model achieving 95.39 % accuracy for predicting the material removal rate under normal processing conditions and 89.63 % accuracy under abnormal conditions. The root-mean-square error (RMSE) of the model was 0.2568cm3/min. By extrapolating product dimensions using a specific formula, the achieved accuracy reached 0.009 mm. The tool status and chip status predictive models exhibited RMSE values of 0.002904 and 0.001039, respectively. This integrated approach can be used to effectively diagnose and rectify defects during the production of optical lenses. It allows for swift dimensional detection, enabling operators to implement accurate solutions, thereby enhancing yield and efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
6秒前
思茶念酒完成签到 ,获得积分10
6秒前
feilong完成签到,获得积分10
7秒前
袁温柔完成签到 ,获得积分10
10秒前
儒雅沛凝完成签到 ,获得积分10
11秒前
陈好好完成签到 ,获得积分10
11秒前
淡然完成签到 ,获得积分10
11秒前
风清扬应助jackhlj采纳,获得30
14秒前
书生完成签到,获得积分10
16秒前
Scheduling完成签到 ,获得积分10
18秒前
江三村完成签到 ,获得积分0
18秒前
量子星尘发布了新的文献求助10
19秒前
DrLin完成签到 ,获得积分10
20秒前
zxy应助唐泽雪穗采纳,获得20
20秒前
YBR完成签到 ,获得积分10
21秒前
ARIA完成签到 ,获得积分10
21秒前
听寒完成签到,获得积分10
21秒前
淞淞于我完成签到 ,获得积分10
24秒前
调皮的笑阳完成签到 ,获得积分10
25秒前
SciEngineerX完成签到,获得积分10
25秒前
桃子味完成签到,获得积分10
26秒前
NINI完成签到 ,获得积分10
26秒前
26秒前
26秒前
杜钿湄完成签到 ,获得积分10
28秒前
量子星尘发布了新的文献求助50
29秒前
唐泽雪穗发布了新的文献求助20
35秒前
宇宙飞船2436完成签到,获得积分10
37秒前
lulu完成签到 ,获得积分10
38秒前
量子星尘发布了新的文献求助150
39秒前
DiJia完成签到 ,获得积分10
41秒前
jackhlj完成签到,获得积分10
46秒前
震动的鹏飞完成签到 ,获得积分10
47秒前
cathyliu完成签到,获得积分10
50秒前
Hao完成签到,获得积分10
52秒前
54秒前
嗷呜小老虎WHY完成签到 ,获得积分10
58秒前
58秒前
毛毛完成签到,获得积分10
58秒前
量子星尘发布了新的文献求助10
59秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5066763
求助须知:如何正确求助?哪些是违规求助? 4288695
关于积分的说明 13360408
捐赠科研通 4108099
什么是DOI,文献DOI怎么找? 2249494
邀请新用户注册赠送积分活动 1254944
关于科研通互助平台的介绍 1187373