Development of multi-sensor data fusion and in-process expert system for monitoring precision in thin wall lens barrel turning

机械加工 人工神经网络 均方误差 偏移量(计算机科学) 工程类 炸薯条 加速度计 机械工程 计算机科学 人工智能 统计 数学 电气工程 程序设计语言 操作系统
作者
Ke-Er Tang,Yin-Chung Huang,Chun‐Wei Liu
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:210: 111195-111195 被引量:1
标识
DOI:10.1016/j.ymssp.2024.111195
摘要

The thin-walled lens barrel is a crucial component in high-precision optical systems and must be machined with high dimensional accuracy and surface quality. However, in the machining of such lenses, variations in material removal rates and surface blemishes can stem from machining parameter settings, tool wear, chip tangling, and tool offset error, resulting in difficulties in controlling workpiece dimensions and surface quality. Consequently, manual inspections and troubleshooting are required, leading to labor-intensive procedures and unscheduled production disruptions that compromise efficiency. To address these challenges, this study developed an expert system based on multi-sensor data fusion for real-time thin-wall machining. Though the use of acoustic emission and three-axis accelerometer sensors installed on a turn-milling machine, pivotal machining parameters such as cutting speed, feed rate, and depth of cut were gathered and analyzed. Support vector regression and artificial neural network models were developed for monitoring material removal rates and tool and chip status, respectively. Principal component analysis was used to increase data efficiency. The outcomes were promising, with the model achieving 95.39 % accuracy for predicting the material removal rate under normal processing conditions and 89.63 % accuracy under abnormal conditions. The root-mean-square error (RMSE) of the model was 0.2568cm3/min. By extrapolating product dimensions using a specific formula, the achieved accuracy reached 0.009 mm. The tool status and chip status predictive models exhibited RMSE values of 0.002904 and 0.001039, respectively. This integrated approach can be used to effectively diagnose and rectify defects during the production of optical lenses. It allows for swift dimensional detection, enabling operators to implement accurate solutions, thereby enhancing yield and efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助frl采纳,获得10
1秒前
2秒前
雨天慢行完成签到 ,获得积分10
2秒前
4秒前
袁莱发布了新的文献求助10
4秒前
小二郎应助moon采纳,获得10
5秒前
感动蓝完成签到,获得积分10
5秒前
5秒前
饱满南松发布了新的文献求助10
7秒前
小敏哼完成签到,获得积分10
7秒前
ygg完成签到,获得积分10
8秒前
杜兰特完成签到,获得积分10
9秒前
喵喵发布了新的文献求助10
11秒前
科研通AI2S应助1111采纳,获得10
11秒前
十三完成签到 ,获得积分10
12秒前
香蕉觅云应助饱满南松采纳,获得10
12秒前
12秒前
酷波er应助夜雨潇潇采纳,获得10
14秒前
14秒前
小吃货完成签到,获得积分10
14秒前
武傲翔发布了新的文献求助10
15秒前
16秒前
袁莱完成签到,获得积分20
16秒前
17秒前
17秒前
17秒前
18秒前
墨兮发布了新的文献求助10
18秒前
zke完成签到,获得积分10
18秒前
19秒前
19秒前
19秒前
19秒前
哈哈哈完成签到,获得积分10
20秒前
20秒前
喵喵完成签到,获得积分10
20秒前
无花果应助Giroro_roro采纳,获得10
20秒前
21秒前
一二完成签到,获得积分10
22秒前
麦子发布了新的文献求助10
22秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992746
求助须知:如何正确求助?哪些是违规求助? 3533621
关于积分的说明 11263200
捐赠科研通 3273346
什么是DOI,文献DOI怎么找? 1806029
邀请新用户注册赠送积分活动 882889
科研通“疑难数据库(出版商)”最低求助积分说明 809609