Development of multi-sensor data fusion and in-process expert system for monitoring precision in thin wall lens barrel turning

机械加工 人工神经网络 均方误差 偏移量(计算机科学) 工程类 炸薯条 加速度计 机械工程 计算机科学 人工智能 数学 统计 操作系统 电气工程 程序设计语言
作者
Ke-Er Tang,Yin-Chung Huang,Chun‐Wei Liu
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:210: 111195-111195 被引量:1
标识
DOI:10.1016/j.ymssp.2024.111195
摘要

The thin-walled lens barrel is a crucial component in high-precision optical systems and must be machined with high dimensional accuracy and surface quality. However, in the machining of such lenses, variations in material removal rates and surface blemishes can stem from machining parameter settings, tool wear, chip tangling, and tool offset error, resulting in difficulties in controlling workpiece dimensions and surface quality. Consequently, manual inspections and troubleshooting are required, leading to labor-intensive procedures and unscheduled production disruptions that compromise efficiency. To address these challenges, this study developed an expert system based on multi-sensor data fusion for real-time thin-wall machining. Though the use of acoustic emission and three-axis accelerometer sensors installed on a turn-milling machine, pivotal machining parameters such as cutting speed, feed rate, and depth of cut were gathered and analyzed. Support vector regression and artificial neural network models were developed for monitoring material removal rates and tool and chip status, respectively. Principal component analysis was used to increase data efficiency. The outcomes were promising, with the model achieving 95.39 % accuracy for predicting the material removal rate under normal processing conditions and 89.63 % accuracy under abnormal conditions. The root-mean-square error (RMSE) of the model was 0.2568cm3/min. By extrapolating product dimensions using a specific formula, the achieved accuracy reached 0.009 mm. The tool status and chip status predictive models exhibited RMSE values of 0.002904 and 0.001039, respectively. This integrated approach can be used to effectively diagnose and rectify defects during the production of optical lenses. It allows for swift dimensional detection, enabling operators to implement accurate solutions, thereby enhancing yield and efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
戴帽子的花盆完成签到,获得积分10
1秒前
凉白开发布了新的文献求助10
1秒前
菠萝蜜完成签到,获得积分10
2秒前
2秒前
2秒前
king完成签到,获得积分10
2秒前
下一秒微笑完成签到,获得积分10
3秒前
4秒前
4秒前
成就乘云发布了新的文献求助10
5秒前
Meyako应助小懒采纳,获得20
5秒前
6秒前
6秒前
两千发布了新的文献求助10
6秒前
雷乾完成签到,获得积分10
6秒前
JamesPei应助选择性哑巴采纳,获得10
7秒前
accept小猫完成签到,获得积分10
8秒前
8秒前
8秒前
my完成签到,获得积分20
8秒前
香蕉觅云应助托塔大王采纳,获得10
8秒前
沉稳发布了新的文献求助10
9秒前
9秒前
星辰大海应助雨做的云霞采纳,获得10
9秒前
9秒前
Raven应助xiaoX12138采纳,获得10
10秒前
10秒前
心灵美凝竹完成签到 ,获得积分10
10秒前
10秒前
霸气的仙人掌应助123采纳,获得20
10秒前
xtt发布了新的文献求助10
11秒前
lws完成签到,获得积分10
11秒前
11秒前
成就乘云完成签到,获得积分20
11秒前
完美世界应助qqq采纳,获得10
12秒前
13秒前
王冉冉完成签到,获得积分10
13秒前
14秒前
CodeCraft应助hahaaa采纳,获得10
15秒前
123完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5351999
求助须知:如何正确求助?哪些是违规求助? 4484908
关于积分的说明 13961093
捐赠科研通 4384639
什么是DOI,文献DOI怎么找? 2409094
邀请新用户注册赠送积分活动 1401552
关于科研通互助平台的介绍 1375095