Development of multi-sensor data fusion and in-process expert system for monitoring precision in thin wall lens barrel turning

机械加工 人工神经网络 均方误差 偏移量(计算机科学) 工程类 炸薯条 加速度计 机械工程 计算机科学 人工智能 数学 统计 操作系统 电气工程 程序设计语言
作者
Ke-Er Tang,Yin-Chung Huang,Chun‐Wei Liu
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:210: 111195-111195 被引量:1
标识
DOI:10.1016/j.ymssp.2024.111195
摘要

The thin-walled lens barrel is a crucial component in high-precision optical systems and must be machined with high dimensional accuracy and surface quality. However, in the machining of such lenses, variations in material removal rates and surface blemishes can stem from machining parameter settings, tool wear, chip tangling, and tool offset error, resulting in difficulties in controlling workpiece dimensions and surface quality. Consequently, manual inspections and troubleshooting are required, leading to labor-intensive procedures and unscheduled production disruptions that compromise efficiency. To address these challenges, this study developed an expert system based on multi-sensor data fusion for real-time thin-wall machining. Though the use of acoustic emission and three-axis accelerometer sensors installed on a turn-milling machine, pivotal machining parameters such as cutting speed, feed rate, and depth of cut were gathered and analyzed. Support vector regression and artificial neural network models were developed for monitoring material removal rates and tool and chip status, respectively. Principal component analysis was used to increase data efficiency. The outcomes were promising, with the model achieving 95.39 % accuracy for predicting the material removal rate under normal processing conditions and 89.63 % accuracy under abnormal conditions. The root-mean-square error (RMSE) of the model was 0.2568cm3/min. By extrapolating product dimensions using a specific formula, the achieved accuracy reached 0.009 mm. The tool status and chip status predictive models exhibited RMSE values of 0.002904 and 0.001039, respectively. This integrated approach can be used to effectively diagnose and rectify defects during the production of optical lenses. It allows for swift dimensional detection, enabling operators to implement accurate solutions, thereby enhancing yield and efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
CYT完成签到,获得积分10
1秒前
田様应助wub采纳,获得10
2秒前
3秒前
潘啊潘发布了新的文献求助10
3秒前
云开发布了新的文献求助10
4秒前
humble完成签到 ,获得积分10
5秒前
5秒前
YXT981221发布了新的文献求助10
6秒前
爆米花应助木又权采纳,获得10
9秒前
六个核桃完成签到,获得积分10
9秒前
洪芃欢发布了新的文献求助20
9秒前
10秒前
云开完成签到,获得积分10
10秒前
SciGPT应助淼淼采纳,获得10
11秒前
guomingqian完成签到,获得积分20
11秒前
11秒前
11秒前
12秒前
张张完成签到 ,获得积分10
13秒前
Lll完成签到 ,获得积分10
14秒前
14秒前
安详凡完成签到 ,获得积分10
15秒前
狂奔的蜗牛完成签到,获得积分10
15秒前
kathy发布了新的文献求助10
16秒前
TRISTE发布了新的文献求助10
17秒前
卡洛完成签到,获得积分10
19秒前
zbr完成签到 ,获得积分10
20秒前
21秒前
金。。。完成签到,获得积分10
21秒前
隐形曼青应助xy采纳,获得10
21秒前
小土豆完成签到 ,获得积分10
21秒前
aaa发布了新的文献求助10
22秒前
22秒前
Elena发布了新的文献求助10
23秒前
雪儿完成签到 ,获得积分10
23秒前
momoni完成签到 ,获得积分10
24秒前
其醉完成签到,获得积分10
24秒前
25秒前
TRISTE完成签到 ,获得积分10
26秒前
高分求助中
合成生物食品制造技术导则,团体标准,编号:T/CITS 396-2025 1000
The Leucovorin Guide for Parents: Understanding Autism’s Folate 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Fermented Coffee Market 500
Comparing natural with chemical additive production 500
Atlas of Liver Pathology: A Pattern-Based Approach 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5237092
求助须知:如何正确求助?哪些是违规求助? 4405099
关于积分的说明 13709387
捐赠科研通 4273149
什么是DOI,文献DOI怎么找? 2344837
邀请新用户注册赠送积分活动 1342033
关于科研通互助平台的介绍 1299752