清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Development of multi-sensor data fusion and in-process expert system for monitoring precision in thin wall lens barrel turning

机械加工 人工神经网络 均方误差 偏移量(计算机科学) 工程类 炸薯条 加速度计 机械工程 计算机科学 人工智能 统计 数学 电气工程 程序设计语言 操作系统
作者
Ke-Er Tang,Yin-Chung Huang,Chun‐Wei Liu
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:210: 111195-111195 被引量:1
标识
DOI:10.1016/j.ymssp.2024.111195
摘要

The thin-walled lens barrel is a crucial component in high-precision optical systems and must be machined with high dimensional accuracy and surface quality. However, in the machining of such lenses, variations in material removal rates and surface blemishes can stem from machining parameter settings, tool wear, chip tangling, and tool offset error, resulting in difficulties in controlling workpiece dimensions and surface quality. Consequently, manual inspections and troubleshooting are required, leading to labor-intensive procedures and unscheduled production disruptions that compromise efficiency. To address these challenges, this study developed an expert system based on multi-sensor data fusion for real-time thin-wall machining. Though the use of acoustic emission and three-axis accelerometer sensors installed on a turn-milling machine, pivotal machining parameters such as cutting speed, feed rate, and depth of cut were gathered and analyzed. Support vector regression and artificial neural network models were developed for monitoring material removal rates and tool and chip status, respectively. Principal component analysis was used to increase data efficiency. The outcomes were promising, with the model achieving 95.39 % accuracy for predicting the material removal rate under normal processing conditions and 89.63 % accuracy under abnormal conditions. The root-mean-square error (RMSE) of the model was 0.2568cm3/min. By extrapolating product dimensions using a specific formula, the achieved accuracy reached 0.009 mm. The tool status and chip status predictive models exhibited RMSE values of 0.002904 and 0.001039, respectively. This integrated approach can be used to effectively diagnose and rectify defects during the production of optical lenses. It allows for swift dimensional detection, enabling operators to implement accurate solutions, thereby enhancing yield and efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
方白秋完成签到,获得积分10
5秒前
毛毛完成签到,获得积分10
8秒前
ww完成签到,获得积分10
11秒前
xin完成签到,获得积分20
21秒前
小蘑菇应助xin采纳,获得10
32秒前
1分钟前
1分钟前
2分钟前
欣5完成签到 ,获得积分10
3分钟前
3分钟前
欣6完成签到 ,获得积分10
3分钟前
3分钟前
一颗煤炭完成签到 ,获得积分10
3分钟前
4分钟前
4分钟前
4分钟前
Echan发布了新的文献求助10
4分钟前
4分钟前
成就发夹应助jdj采纳,获得10
4分钟前
紫熊发布了新的文献求助20
5分钟前
5分钟前
able完成签到 ,获得积分10
5分钟前
5分钟前
正直的山雁完成签到,获得积分10
5分钟前
紫熊发布了新的文献求助20
6分钟前
CipherSage应助正直的山雁采纳,获得10
6分钟前
6分钟前
6分钟前
6分钟前
Owen应助正直的山雁采纳,获得10
6分钟前
紫熊发布了新的文献求助20
7分钟前
7分钟前
研友_VZG7GZ应助捋顺爆炸头采纳,获得10
7分钟前
8分钟前
GQ完成签到,获得积分10
8分钟前
9分钟前
科研通AI2S应助科研通管家采纳,获得10
9分钟前
汉堡包应助紫熊采纳,获得10
9分钟前
9分钟前
野椒搞科研完成签到,获得积分10
10分钟前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Pharmacogenomics: Applications to Patient Care, Third Edition 800
Gerard de Lairesse : an artist between stage and studio 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3081574
求助须知:如何正确求助?哪些是违规求助? 2734437
关于积分的说明 7532802
捐赠科研通 2383903
什么是DOI,文献DOI怎么找? 1264099
科研通“疑难数据库(出版商)”最低求助积分说明 612563
版权声明 597578