Gradient three-dimensional current collector with lithiophilic nanolayer regulation for efficient lithium metal anode construction

阳极 法拉第效率 材料科学 电池(电) 枝晶(数学) 集电器 电极 化学工程 电化学 电流密度 锂(药物) 金属 脚手架 金属锂 纳米技术 化学 冶金 计算机科学 物理化学 工程类 物理 内分泌学 功率(物理) 数据库 医学 电解质 量子力学 数学 几何学
作者
Hao Yang,Weishang Jia,Jingfang Zhang,Yuchi Liu,Zihao Wang,Yao‐Yue Yang,Lanxiang Feng,Xinxiu Yan,Tao Li,Wei Zou,Jingze Li
出处
期刊:Journal of Colloid and Interface Science [Elsevier]
卷期号:661: 870-878 被引量:11
标识
DOI:10.1016/j.jcis.2024.02.014
摘要

Metallic lithium (Li) is highly desirable for Li battery anodes due to its unique advantages. However, the growth of Li dendrites poses challenges for commercialization. To address this issue, researchers have proposed various three-dimensional (3D) current collectors. In this study, the selective modification of a 3D Cu foam scaffold with lithiophilic elements was explored to induce controlled Li deposition. The Cu foam was selectively modified with Ag and Sn to create uniform Cu foam (U-Cu) and gradient lithiophilic Cu foam (G-Cu) structures. Density Functional Theory (DFT) calculations revealed that Ag exhibited a stronger binding energy with Li compared to Sn, indicating superior Li induction capabilities. Electrochemical testing demonstrated that the half cell with the G-Cu@Ag electrode exhibited excellent cycling stability, maintaining 550 cycles with an average Coulombic efficiency (CE) of 97.35%. This performance surpassed that of both Cu foam and G-Cu@Sn. The gradient modification of the current collectors improved the utilization of the 3D scaffold and prevented Li accumulation at the top of the scaffold. Overall, the selective modification of the 3D Cu foam scaffold with lithiophilic elements, particularly Ag, offers promising prospects for mitigating Li dendrite growth and enhancing the performance of Li batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MAR完成签到,获得积分10
刚刚
傲娇早晨完成签到,获得积分10
刚刚
心随风飞完成签到,获得积分10
1秒前
1秒前
细心的小刺猬完成签到,获得积分10
2秒前
chen发布了新的文献求助10
2秒前
稀饭完成签到,获得积分10
2秒前
2秒前
5476发布了新的文献求助10
2秒前
2秒前
没有人歌颂完成签到,获得积分10
3秒前
mong完成签到,获得积分10
3秒前
菠萝吹宝完成签到 ,获得积分10
4秒前
滴滴完成签到,获得积分10
4秒前
adovj完成签到 ,获得积分10
4秒前
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
4秒前
4秒前
浮游应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
NexusExplorer应助科研通管家采纳,获得10
4秒前
4秒前
AprilLeung完成签到 ,获得积分10
5秒前
真人完成签到 ,获得积分10
5秒前
LPP完成签到 ,获得积分10
5秒前
共享精神应助张美美采纳,获得10
5秒前
5秒前
yang完成签到,获得积分10
5秒前
5秒前
5秒前
希望天下0贩的0应助玿琤采纳,获得10
7秒前
ctttt发布了新的文献求助10
7秒前
搜集达人应助黎颜采纳,获得10
7秒前
red发布了新的文献求助10
8秒前
9秒前
fanghongjian发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5651881
求助须知:如何正确求助?哪些是违规求助? 4786125
关于积分的说明 15056850
捐赠科研通 4810523
什么是DOI,文献DOI怎么找? 2573252
邀请新用户注册赠送积分活动 1529137
关于科研通互助平台的介绍 1488090