全球导航卫星系统应用
计算机科学
稳健性(进化)
激光雷达
人工智能
实时计算
计算机视觉
全球定位系统
遥感
地理
生物化学
电信
基因
化学
作者
Chencheng Deng,Shoukun Wang,Junzheng Wang,Yongkang Xu,Zhihua Chen
出处
期刊:Unmanned Systems
[World Scientific]
日期:2024-02-03
卷期号:: 1-13
被引量:4
标识
DOI:10.1142/s2301385025500293
摘要
Accurate and robust state estimation is critical for the heterogeneous agent systems, particularly when considering the challenges posed by Unmanned Aerial Vehicles (UAVs) operating in perceptually-degraded environments where access to Global Navigation Satellite System (GNSS) signals is lost. We can, however, actively increase the amount of optimal localization available to UAV by augmenting them with a small number of more expensive, but less resource-constrained, heterogeneous agents. In this paper, we propose a novel detection, localization, and tracking framework for UAV based on LiDAR. First, we present an innovative approach that integrates range image projection and Depth Cluster of LiDAR point clouds with UAV technology. Subsequently, we devise a multidimensional feature probability detection and tracking evaluation function, enabling the detection, estimation, and active tracking of UAV movement. Finally, we conduct comprehensive experiments using heterogeneous agent systems to assess the effectiveness and robustness of the developed framework. The experiments reveal a minimum 20% reduction in running time and an average localization accuracy error of 1.98[Formula: see text]cm.
科研通智能强力驱动
Strongly Powered by AbleSci AI