清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

An efficient frequency domain fusion network of infrared and visible images

计算机科学 图像融合 转化(遗传学) 小波 背景(考古学) 分割 融合 人工智能 保险丝(电气) 计算机视觉 推论 小波变换 模式识别(心理学) 传感器融合 图像(数学) 语言学 哲学 古生物学 生物化学 化学 生物 电气工程 基因 工程类
作者
Chenwu Wang,Junsheng Wu,Aiqing Fang,Zhixiang Zhu,Pei Wang,Hao Chen
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:133: 108013-108013 被引量:5
标识
DOI:10.1016/j.engappai.2024.108013
摘要

Image fusion plays a crucial role in enhancing the quality and accuracy of semantic segmentation, which is essential for autonomous driving systems. By merging information from multiple imaging sensors or modalities, such as infrared and visible images, image fusion enriches the data and improves the perception capabilities of autonomous vehicles. However, current fusion methodologies often cannot balance model complexity, inference efficiency, and fusion accuracy simultaneously, making them difficult to implement in resource-constrained environments. In response to this, this paper presents a lightweight fusion network based on frequency transformation and deep learning techniques, leveraging wavelet transformation to fuse infrared and visible images. Concisely, the fusion model decomposes input images into different frequency sub-bands using wavelet transforms. It then efficiently fuses the multi-scale feature representations in the frequency domains with a specially designed fusion loss. Compared to traditional fusion approaches, our method not only achieves a better balance between subjective fusion quality and downstream vision tasks but also significantly improves model inference efficiency, paving the way for real-time autonomous driving systems. Extensive experiments on public datasets show that our method can achieve state-of-the-art performance while satisfying parameter efficiency in the context of image fusion and semantic segmentation tasks. Concisely, our approach is nearly 100× faster while using a model 6000× smaller in size compared to SegMIF.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
12秒前
35秒前
今后应助科研通管家采纳,获得10
35秒前
39秒前
39秒前
无心的尔阳完成签到 ,获得积分20
43秒前
46秒前
57秒前
poki完成签到 ,获得积分10
1分钟前
英俊的铭应助典雅的荣轩采纳,获得10
1分钟前
知行者完成签到 ,获得积分10
1分钟前
小鱼女侠完成签到 ,获得积分10
1分钟前
房天川完成签到 ,获得积分10
1分钟前
水天一色发布了新的文献求助10
1分钟前
jerry完成签到 ,获得积分10
1分钟前
啾一口香菜完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
胡可完成签到 ,获得积分10
2分钟前
沙海沉戈完成签到,获得积分0
2分钟前
无悔完成签到 ,获得积分10
2分钟前
2分钟前
负责以山完成签到 ,获得积分10
2分钟前
zzzzz发布了新的文献求助10
2分钟前
烟雨江南完成签到,获得积分10
2分钟前
wyh295352318完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
3分钟前
zzzzz完成签到,获得积分10
3分钟前
3分钟前
3分钟前
刘刘完成签到 ,获得积分10
4分钟前
hyxu678完成签到,获得积分10
4分钟前
雷小牛完成签到 ,获得积分10
4分钟前
小蝴蝶完成签到,获得积分20
4分钟前
4分钟前
量子星尘发布了新的文献求助10
5分钟前
小蝴蝶发布了新的文献求助10
5分钟前
Binggo完成签到,获得积分10
5分钟前
5分钟前
5分钟前
搞怪莫茗发布了新的文献求助10
5分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015363
求助须知:如何正确求助?哪些是违规求助? 3555313
关于积分的说明 11317959
捐赠科研通 3288629
什么是DOI,文献DOI怎么找? 1812284
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 811983