An efficient frequency domain fusion network of infrared and visible images

计算机科学 图像融合 转化(遗传学) 小波 背景(考古学) 分割 融合 人工智能 保险丝(电气) 计算机视觉 推论 小波变换 模式识别(心理学) 传感器融合 图像(数学) 语言学 哲学 古生物学 生物化学 化学 生物 电气工程 基因 工程类
作者
Chenwu Wang,Junsheng Wu,Aiqing Fang,Zhixiang Zhu,Pei Wang,Hao Chen
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:133: 108013-108013 被引量:5
标识
DOI:10.1016/j.engappai.2024.108013
摘要

Image fusion plays a crucial role in enhancing the quality and accuracy of semantic segmentation, which is essential for autonomous driving systems. By merging information from multiple imaging sensors or modalities, such as infrared and visible images, image fusion enriches the data and improves the perception capabilities of autonomous vehicles. However, current fusion methodologies often cannot balance model complexity, inference efficiency, and fusion accuracy simultaneously, making them difficult to implement in resource-constrained environments. In response to this, this paper presents a lightweight fusion network based on frequency transformation and deep learning techniques, leveraging wavelet transformation to fuse infrared and visible images. Concisely, the fusion model decomposes input images into different frequency sub-bands using wavelet transforms. It then efficiently fuses the multi-scale feature representations in the frequency domains with a specially designed fusion loss. Compared to traditional fusion approaches, our method not only achieves a better balance between subjective fusion quality and downstream vision tasks but also significantly improves model inference efficiency, paving the way for real-time autonomous driving systems. Extensive experiments on public datasets show that our method can achieve state-of-the-art performance while satisfying parameter efficiency in the context of image fusion and semantic segmentation tasks. Concisely, our approach is nearly 100× faster while using a model 6000× smaller in size compared to SegMIF.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
激动的南烟完成签到,获得积分10
1秒前
Joyce_Jing发布了新的文献求助10
2秒前
3秒前
小心翼翼完成签到,获得积分10
3秒前
所所应助keroro采纳,获得10
4秒前
怦怦应助jiajiajia采纳,获得10
4秒前
李健应助666666采纳,获得10
4秒前
研友_8DAv0L发布了新的文献求助10
5秒前
6秒前
Satoru发布了新的文献求助10
6秒前
6秒前
6秒前
8秒前
FashionBoy应助如云轻如水澈采纳,获得10
8秒前
田様应助小小徐采纳,获得10
8秒前
WEN发布了新的文献求助30
8秒前
8秒前
萧水白应助孤独梦曼采纳,获得10
10秒前
星辰大海应助Pursuit采纳,获得10
11秒前
程程程发布了新的文献求助10
11秒前
11秒前
呱呱完成签到 ,获得积分10
12秒前
12秒前
666666完成签到,获得积分10
13秒前
酷波er应助研友_8DAv0L采纳,获得10
13秒前
16秒前
16秒前
keroro发布了新的文献求助10
17秒前
17秒前
18秒前
wangcy完成签到 ,获得积分10
18秒前
18秒前
18秒前
19秒前
20秒前
21发布了新的文献求助10
20秒前
Paul_Geromeng完成签到,获得积分10
21秒前
秀丽书琴发布了新的文献求助10
21秒前
21秒前
aura发布了新的文献求助10
22秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
SIS-ISO/IEC TS 27100:2024 Information technology — Cybersecurity — Overview and concepts (ISO/IEC TS 27100:2020, IDT)(Swedish Standard) 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3232703
求助须知:如何正确求助?哪些是违规求助? 2879469
关于积分的说明 8211416
捐赠科研通 2546954
什么是DOI,文献DOI怎么找? 1376476
科研通“疑难数据库(出版商)”最低求助积分说明 647624
邀请新用户注册赠送积分活动 623003