A comprehensive framework for explainable cluster analysis

星团(航天器) 计算机科学 计算机网络
作者
Miguel Alvarez-Garcia,Raquel Ibar-Alonso,Mar Arenas‐Parra
出处
期刊:Information Sciences [Elsevier]
卷期号:663: 120282-120282 被引量:3
标识
DOI:10.1016/j.ins.2024.120282
摘要

Machine learning has proven to be a powerful tool for knowledge extraction from large data sets across different domains. Data quality and results interpretability are essential when applying machine learning to inform decision-making processes. This is especially true for clustering methods, which are frequently employed for extracting knowledge from large data sets, due to their unsupervised nature. Although there are significant recent developments in explainable artificial intelligence (XAI) applied to unsupervised problems, they focus primarily on cluster interpretability and often overlook data quality challenges. Moreover, these developments are typically designed to use specific clustering algorithms, limiting their adaptability to incorporate alternative techniques. We propose a novel and comprehensive four-step sequential framework for explainable cluster analysis on high-dimensional mixed-type data to address these limitations. The framework encompasses data preprocessing, dimensionality reduction, clustering, and classification to ensure robust and explainable results. The proposed methodology has also been implemented in an open-source Python package called Clust-learn, designed to be accessible and customizable for researchers and practitioners. The framework has been validated by applying a case study focusing on large-scale assessments in education, effectively illustrating the strength and usefulness of the methodology in extracting and synthesizing knowledge from complex real-world data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助xiao采纳,获得10
刚刚
科目三应助安然采纳,获得10
1秒前
Culto完成签到,获得积分20
1秒前
BING发布了新的文献求助10
2秒前
linyu发布了新的文献求助10
2秒前
小叶子发布了新的文献求助10
2秒前
Zephyr完成签到 ,获得积分10
2秒前
123456发布了新的文献求助10
3秒前
苏梓卿完成签到,获得积分10
3秒前
3秒前
高兴的半仙完成签到,获得积分10
3秒前
虚幻发布了新的文献求助10
4秒前
吃鲨鱼的小虾米完成签到,获得积分10
4秒前
5秒前
无花果应助希波克拉底采纳,获得10
5秒前
顺遂完成签到,获得积分10
6秒前
6秒前
7秒前
全齐发布了新的文献求助10
8秒前
阿黎发布了新的文献求助10
9秒前
务实青亦关注了科研通微信公众号
10秒前
华仔应助Culto采纳,获得10
11秒前
11秒前
西门访天发布了新的文献求助10
11秒前
酷波er应助ZYT采纳,获得10
11秒前
深情安青应助kkkk采纳,获得10
12秒前
12秒前
13秒前
lixm发布了新的文献求助10
14秒前
科研通AI2S应助Han采纳,获得10
15秒前
拓跋从阳发布了新的文献求助10
16秒前
传奇3应助飘逸晓曼采纳,获得10
16秒前
科研通AI2S应助美好斓采纳,获得10
17秒前
17秒前
linyu完成签到,获得积分10
17秒前
hugo完成签到,获得积分10
18秒前
烟花应助cc采纳,获得10
18秒前
读研好难发布了新的文献求助10
20秒前
lyh关闭了lyh文献求助
20秒前
文刀武书生完成签到,获得积分10
20秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Wirkstoffdesign 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3129063
求助须知:如何正确求助?哪些是违规求助? 2779896
关于积分的说明 7745143
捐赠科研通 2435056
什么是DOI,文献DOI怎么找? 1293897
科研通“疑难数据库(出版商)”最低求助积分说明 623471
版权声明 600542