A comprehensive framework for explainable cluster analysis

星团(航天器) 计算机科学 计算机网络
作者
Miguel Alvarez-Garcia,Raquel Ibar-Alonso,Mar Arenas‐Parra
出处
期刊:Information Sciences [Elsevier BV]
卷期号:663: 120282-120282 被引量:3
标识
DOI:10.1016/j.ins.2024.120282
摘要

Machine learning has proven to be a powerful tool for knowledge extraction from large data sets across different domains. Data quality and results interpretability are essential when applying machine learning to inform decision-making processes. This is especially true for clustering methods, which are frequently employed for extracting knowledge from large data sets, due to their unsupervised nature. Although there are significant recent developments in explainable artificial intelligence (XAI) applied to unsupervised problems, they focus primarily on cluster interpretability and often overlook data quality challenges. Moreover, these developments are typically designed to use specific clustering algorithms, limiting their adaptability to incorporate alternative techniques. We propose a novel and comprehensive four-step sequential framework for explainable cluster analysis on high-dimensional mixed-type data to address these limitations. The framework encompasses data preprocessing, dimensionality reduction, clustering, and classification to ensure robust and explainable results. The proposed methodology has also been implemented in an open-source Python package called Clust-learn, designed to be accessible and customizable for researchers and practitioners. The framework has been validated by applying a case study focusing on large-scale assessments in education, effectively illustrating the strength and usefulness of the methodology in extracting and synthesizing knowledge from complex real-world data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zehua309发布了新的文献求助10
1秒前
权志龙完成签到,获得积分10
1秒前
slow发布了新的文献求助10
1秒前
1秒前
余烬22完成签到,获得积分10
1秒前
阿甲发布了新的文献求助10
3秒前
3秒前
光亮归尘完成签到,获得积分20
4秒前
英吉利25发布了新的文献求助10
4秒前
4秒前
无私追命发布了新的文献求助10
5秒前
5秒前
生动初雪完成签到 ,获得积分10
6秒前
cxy完成签到,获得积分10
6秒前
han应助xiaojinyu采纳,获得20
7秒前
陶醉完成签到,获得积分10
8秒前
谦让含玉发布了新的文献求助20
8秒前
乐观忆之完成签到,获得积分10
8秒前
9秒前
欣m发布了新的文献求助10
10秒前
10秒前
九号球完成签到,获得积分10
10秒前
11秒前
青豆发布了新的文献求助10
11秒前
11秒前
12秒前
12秒前
Ava应助孙梦茹采纳,获得10
12秒前
12秒前
脑洞疼应助外向的汉堡采纳,获得10
13秒前
13秒前
13秒前
想抱发布了新的文献求助10
14秒前
深情安青应助Passion采纳,获得10
14秒前
小二郎应助富贵迷人眼采纳,获得10
14秒前
清风发布了新的文献求助10
14秒前
14秒前
14秒前
哈哈发布了新的文献求助10
15秒前
范浩然发布了新的文献求助10
16秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992495
求助须知:如何正确求助?哪些是违规求助? 3533431
关于积分的说明 11262369
捐赠科研通 3273025
什么是DOI,文献DOI怎么找? 1805895
邀请新用户注册赠送积分活动 882800
科研通“疑难数据库(出版商)”最低求助积分说明 809496