An Artificial Neural Network-Based Fault Diagnostics Approach for Hydrogen-Fueled Micro Gas Turbines

人工神经网络 燃气轮机 断层(地质) 计算机科学 人工智能 环境科学 工程类 机械工程 地质学 地震学
作者
Muhammad Baqir Hashmi,Mohammad Mansouri,Amare Desalegn Fentaye,Shazaib Ahsan,Konstantinos Kyprianidis
出处
期刊:Energies [MDPI AG]
卷期号:17 (3): 719-719 被引量:4
标识
DOI:10.3390/en17030719
摘要

The utilization of hydrogen fuel in gas turbines brings significant changes to the thermophysical properties of flue gas, including higher specific heat capacities and an enhanced steam content. Therefore, hydrogen-fueled gas turbines are susceptible to health degradation in the form of steam-induced corrosion and erosion in the hot gas path. In this context, the fault diagnosis of hydrogen-fueled gas turbines becomes indispensable. To the authors’ knowledge, there is a scarcity of fault diagnosis studies for retrofitted gas turbines considering hydrogen as a potential fuel. The present study, however, develops an artificial neural network (ANN)-based fault diagnosis model using the MATLAB environment. Prior to the fault detection, isolation, and identification modules, physics-based performance data of a 100 kW micro gas turbine (MGT) were synthesized using the GasTurb tool. An ANN-based classification algorithm showed a 96.2% classification accuracy for the fault detection and isolation. Moreover, the feedforward neural network-based regression algorithm showed quite good training, testing, and validation accuracies in terms of the root mean square error (RMSE). The study revealed that the presence of hydrogen-induced corrosion faults (both as a single corrosion fault or as simultaneous fouling and corrosion) led to false alarms, thereby prompting other incorrect faults during the fault detection and isolation modules. Additionally, the performance of the fault identification module for the hydrogen fuel scenario was found to be marginally lower than that of the natural gas case due to assumption of small magnitudes of faults arising from hydrogen-induced corrosion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shunbaopan完成签到,获得积分10
1秒前
1秒前
小樊同学发布了新的文献求助10
2秒前
灰哥的灰发布了新的文献求助30
4秒前
5秒前
无花果应助Red采纳,获得10
6秒前
shunbao完成签到,获得积分10
6秒前
reap发布了新的文献求助10
7秒前
小樊同学完成签到,获得积分10
8秒前
吡咯爱成环完成签到 ,获得积分0
8秒前
乌漆嘛黑完成签到,获得积分10
9秒前
9秒前
10秒前
CodeCraft应助一念来回采纳,获得10
11秒前
打工人一枚完成签到,获得积分10
11秒前
liuyaquan完成签到,获得积分10
12秒前
smile应助胖哥采纳,获得10
12秒前
Arthur完成签到 ,获得积分10
13秒前
14秒前
菠萝完成签到,获得积分10
14秒前
reap完成签到,获得积分10
14秒前
赘婿应助hilda采纳,获得30
14秒前
liuyaquan发布了新的文献求助10
15秒前
17秒前
罗燕完成签到 ,获得积分0
17秒前
归海小凝完成签到,获得积分10
21秒前
24秒前
明理小土豆完成签到,获得积分10
24秒前
25秒前
make关注了科研通微信公众号
26秒前
土豆不吃鱼完成签到,获得积分10
26秒前
钟小熊完成签到,获得积分10
26秒前
Amor发布了新的文献求助10
27秒前
林森应助hahaha采纳,获得10
28秒前
Esfuerzo完成签到,获得积分10
29秒前
31秒前
路十三完成签到 ,获得积分10
31秒前
RC_Wang应助土豆不吃鱼采纳,获得10
32秒前
puer完成签到,获得积分10
32秒前
32秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3522957
求助须知:如何正确求助?哪些是违规求助? 3103935
关于积分的说明 9268001
捐赠科研通 2800675
什么是DOI,文献DOI怎么找? 1537078
邀请新用户注册赠送积分活动 715371
科研通“疑难数据库(出版商)”最低求助积分说明 708759