Exploiting Optical Flow Guidance for Transformer-Based Video Inpainting

修补 变压器 计算机科学 光流 利用 人工智能 计算机视觉 图像(数学) 电压 计算机安全 量子力学 物理
作者
Kaidong Zhang,Jialun Peng,Jingjing Fu,Dong Liu
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:46 (7): 4977-4992
标识
DOI:10.1109/tpami.2024.3361010
摘要

Transformers have been widely used for video processing owing to the multi-head self attention (MHSA) mechanism. However, the MHSA mechanism encounters an intrinsic difficulty for video inpainting, since the features associated with the corrupted regions are degraded and incur inaccurate self attention. This problem, termed query degradation, may be mitigated by first completing optical flows and then using the flows to guide the self attention, which was verified in our previous work - flow-guided transformer (FGT). We further exploit the flow guidance and propose FGT++ to pursue more effective and efficient video inpainting. First, we design a lightweight flow completion network by using local aggregation and edge loss. Second, to address the query degradation, we propose a flow guidance feature integration module, which uses the motion discrepancy to enhance the features, together with a flow-guided feature propagation module that warps the features according to the flows. Third, we decouple the transformer along the temporal and spatial dimensions, where flows are used to select the tokens through a temporally deformable MHSA mechanism, and global tokens are combined with the inner-window local tokens through a dual-perspective MHSA mechanism. FGT++ is experimentally evaluated to be outperforming the existing video inpainting networks qualitatively and quantitatively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
18166992885完成签到 ,获得积分10
2秒前
4秒前
中世纪托尼完成签到,获得积分10
4秒前
米娅发布了新的文献求助20
7秒前
kele发布了新的文献求助10
7秒前
8秒前
hh发布了新的文献求助10
9秒前
wang完成签到,获得积分10
9秒前
222完成签到,获得积分10
9秒前
11秒前
12秒前
SunKnight完成签到,获得积分20
12秒前
小会发布了新的文献求助10
14秒前
15秒前
WILDTROYE完成签到,获得积分10
16秒前
小秋发布了新的文献求助10
16秒前
16秒前
super chan发布了新的文献求助10
18秒前
嘒彼小星完成签到 ,获得积分10
19秒前
20秒前
22秒前
23秒前
执着的无色完成签到,获得积分10
23秒前
乐乐应助Crazylittleape采纳,获得10
23秒前
24秒前
西部森林发布了新的文献求助10
28秒前
WC241002292完成签到,获得积分10
29秒前
虞无声发布了新的文献求助10
29秒前
ablexm发布了新的文献求助10
30秒前
30秒前
30秒前
若尘完成签到 ,获得积分10
31秒前
kele完成签到 ,获得积分10
31秒前
hh完成签到,获得积分10
32秒前
pzy123完成签到,获得积分20
35秒前
37秒前
懒羊羊完成签到,获得积分10
37秒前
传奇3应助科研通管家采纳,获得10
38秒前
爆米花应助科研通管家采纳,获得10
38秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309767
求助须知:如何正确求助?哪些是违规求助? 2943014
关于积分的说明 8512004
捐赠科研通 2618059
什么是DOI,文献DOI怎么找? 1430795
科研通“疑难数据库(出版商)”最低求助积分说明 664310
邀请新用户注册赠送积分活动 649468