生物陶瓷
再生(生物学)
化学
材料科学
骨钙素
骨保护素
金黄色葡萄球菌
活性氧
体内
脚手架
抗菌活性
纳米技术
运行x2
体外
生物医学工程
激活剂(遗传学)
生物化学
成骨细胞
碱性磷酸酶
医学
细菌
酶
细胞生物学
生物
遗传学
生物技术
基因
作者
Zongyan Gao,Zhenyu Song,Rong Guo,Meng Zhang,Jia‐Min Wu,Mingzhu Pan,Qianming Du,He Yaping,X. Wang,Li Gao,Yi Jin,Ziwei Jing,Jia Zheng
标识
DOI:10.1002/adhm.202303182
摘要
Abstract Infective bone defect is increasingly threatening human health. How to achieve the optimal antibacterial activity and regenerative repair of infective bone defect simultaneously is a huge challenge in clinic. Herein, this work reports a rational integration of Mn single‐atom nanozyme into the 3D‐printed bioceramic scaffolds (Mn/HSAE@BCP scaffolds). The integrated Mn/HSAE@BCP scaffolds can catalyze the conversion of H 2 O 2 to produce hydroxyl radical ( • OH) and superoxide anion (O 2 •− ) through cascade reaction. Besides, the prominent thermal conversion efficiency of Mn/HSAE@BCP scaffolds can be utilized for sonodynamic therapy (SDT). The synergetic strategy of chemodynamic therapy (CDT)/SDT enables the sufficient generation of reactive oxygen species (ROS) to kill Staphylococcus aureus ( S. aureus ) or Escherichia coli ( E. coli ). Furthermore, the enhanced antibacterial efficacy of Mn/HSAE@BCP scaffolds is beneficial to upregulate the expression of osteogenesis‐related markers (such as collagen 1(COL1), Runt‐related transcription factor 2 (Runx2), osteocalcin (OCN), and osteoprotegerin (OPG)) in vitro and further promote bone regeneration in vivo. The results demonstrate the good potential of Mn/HSAE@BCP scaffolds for the enhanced antibacterial activity and bone regeneration, which provide an effective method for the treatment of clinical infective bone defect.
科研通智能强力驱动
Strongly Powered by AbleSci AI