清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Dual-domain strip attention for image restoration

计算机科学 去模糊 图像复原 人工智能 图像(数学) 计算机视觉 像素 模式识别(心理学) 图像处理
作者
Yuning Cui,Alois Knoll
出处
期刊:Neural Networks [Elsevier]
卷期号:171: 429-439 被引量:22
标识
DOI:10.1016/j.neunet.2023.12.003
摘要

Image restoration aims to reconstruct a latent high-quality image from a degraded observation. Recently, the usage of Transformer has significantly advanced the state-of-the-art performance of various image restoration tasks due to its powerful ability to model long-range dependencies. However, the quadratic complexity of self-attention hinders practical applications. Moreover, sufficiently leveraging the huge spectral disparity between clean and degraded image pairs can also be conducive to image restoration. In this paper, we develop a dual-domain strip attention mechanism for image restoration by enhancing representation learning, which consists of spatial and frequency strip attention units. Specifically, the spatial strip attention unit harvests the contextual information for each pixel from its adjacent locations in the same row or column under the guidance of the learned weights via a simple convolutional branch. In addition, the frequency strip attention unit refines features in the spectral domain via frequency separation and modulation, which is implemented by simple pooling techniques. Furthermore, we apply different strip sizes for enhancing multi-scale learning, which is beneficial for handling degradations of various sizes. By employing the dual-domain attention units in different directions, each pixel can implicitly perceive information from an expanded region. Taken together, the proposed dual-domain strip attention network (DSANet) achieves state-of-the-art performance on 12 different datasets for four image restoration tasks, including image dehazing, image desnowing, image denoising, and image defocus deblurring. The code and models are available at https://github.com/c-yn/DSANet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bookgg完成签到 ,获得积分10
13秒前
XZZ完成签到 ,获得积分10
14秒前
丘比特应助丹尼尔采纳,获得10
26秒前
哥哥发布了新的文献求助10
29秒前
心静自然好完成签到 ,获得积分10
33秒前
夜渡河关注了科研通微信公众号
34秒前
37秒前
cherry_mm发布了新的文献求助10
41秒前
FashionBoy应助哥哥采纳,获得10
42秒前
缘分完成签到,获得积分10
49秒前
胤嘉完成签到 ,获得积分10
50秒前
夜渡河发布了新的文献求助10
55秒前
路路完成签到 ,获得积分10
56秒前
57秒前
王kk完成签到 ,获得积分10
59秒前
哥哥完成签到,获得积分10
1分钟前
1分钟前
丹尼尔发布了新的文献求助10
1分钟前
SYLH应助雨辰采纳,获得10
1分钟前
J陆lululu完成签到 ,获得积分10
1分钟前
Gary完成签到 ,获得积分10
1分钟前
lj完成签到 ,获得积分10
1分钟前
王波完成签到 ,获得积分10
2分钟前
雨辰完成签到,获得积分10
2分钟前
逆流的鱼完成签到 ,获得积分10
2分钟前
yinyin完成签到 ,获得积分10
2分钟前
脑洞疼应助一彤展翅采纳,获得30
2分钟前
whh123完成签到 ,获得积分10
2分钟前
追寻的续完成签到 ,获得积分10
2分钟前
lalala完成签到 ,获得积分10
2分钟前
爱学习的婷完成签到 ,获得积分10
2分钟前
2分钟前
ECHO完成签到,获得积分10
2分钟前
边曦完成签到 ,获得积分0
2分钟前
2分钟前
游01完成签到 ,获得积分10
2分钟前
2分钟前
潘fujun完成签到 ,获得积分10
2分钟前
2分钟前
默默尔安发布了新的文献求助10
2分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555826
求助须知:如何正确求助?哪些是违规求助? 3131443
关于积分的说明 9391104
捐赠科研通 2831132
什么是DOI,文献DOI怎么找? 1556396
邀请新用户注册赠送积分活动 726516
科研通“疑难数据库(出版商)”最低求助积分说明 715890