Enhanced sleep staging with artificial intelligence: a validation study of new software for sleep scoring

多导睡眠图 脑电图 睡眠(系统调用) 睡眠阶段 置信区间 医学 眼电学 听力学 人工智能 计算机科学 物理医学与康复 内科学 操作系统 精神科
作者
Massimiliano Grassi,Silvia Daccò,Daniela Caldirola,Giampaolo Perna,Koen Schruers,Archie Defillo
出处
期刊:Frontiers in artificial intelligence [Frontiers Media SA]
卷期号:6
标识
DOI:10.3389/frai.2023.1278593
摘要

Manual sleep staging (MSS) using polysomnography is a time-consuming task, requires significant training, and can lead to significant variability among scorers. STAGER is a software program based on machine learning algorithms that has been developed by Medibio Limited (Savage, MN, USA) to perform automatic sleep staging using only EEG signals from polysomnography. This study aimed to extensively investigate its agreement with MSS performed during clinical practice and by three additional expert sleep technicians. Forty consecutive polysomnographic recordings of patients referred to three US sleep clinics for sleep evaluation were retrospectively collected and analyzed. Three experienced technicians independently staged the recording using the electroencephalography, electromyography, and electrooculography signals according to the American Academy of Sleep Medicine guidelines. The staging initially performed during clinical practice was also considered. Several agreement statistics between the automatic sleep staging (ASS) and MSS, among the different MSSs, and their differences were calculated. Bootstrap resampling was used to calculate 95% confidence intervals and the statistical significance of the differences. STAGER's ASS was most comparable with, or statistically significantly better than the MSS, except for a partial reduction in the positive percent agreement in the wake stage. These promising results indicate that STAGER software can perform ASS of inpatient polysomnographic recordings accurately in comparison with MSS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研小白完成签到 ,获得积分10
刚刚
ZDZ完成签到,获得积分20
4秒前
科研通AI2S应助a1313采纳,获得10
5秒前
领导范儿应助a1313采纳,获得10
5秒前
5秒前
橙橙完成签到,获得积分10
6秒前
ltc完成签到,获得积分10
7秒前
科研通AI2S应助甜美的惠采纳,获得10
7秒前
乐乐应助科研通管家采纳,获得10
7秒前
小蘑菇应助科研通管家采纳,获得10
8秒前
思源应助科研通管家采纳,获得10
8秒前
赘婿应助科研通管家采纳,获得10
8秒前
8秒前
Ava应助科研通管家采纳,获得10
8秒前
哎嘿应助科研通管家采纳,获得10
8秒前
思源应助科研通管家采纳,获得30
8秒前
8秒前
陶渊明发布了新的文献求助10
9秒前
10秒前
Tache发布了新的文献求助10
10秒前
天天快乐应助木林森采纳,获得10
12秒前
12秒前
白笑石完成签到,获得积分10
13秒前
香蕉觅云应助吱哦周采纳,获得10
15秒前
ding应助Rachel采纳,获得10
17秒前
youy完成签到 ,获得积分10
17秒前
月下天成完成签到,获得积分10
18秒前
19秒前
大聪明完成签到,获得积分10
19秒前
含蓄的明雪应助13508104971采纳,获得10
20秒前
cx完成签到,获得积分10
20秒前
缓慢的熠彤完成签到,获得积分10
20秒前
21秒前
无花果应助鲁新连采纳,获得10
22秒前
22秒前
23秒前
Akim应助111采纳,获得10
23秒前
闫磊发布了新的文献求助10
25秒前
吱哦周发布了新的文献求助10
25秒前
spenley发布了新的文献求助10
26秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155953
求助须知:如何正确求助?哪些是违规求助? 2807296
关于积分的说明 7872331
捐赠科研通 2465597
什么是DOI,文献DOI怎么找? 1312272
科研通“疑难数据库(出版商)”最低求助积分说明 630017
版权声明 601905