Diagnostic accuracy of radiomics-based machine learning for neoadjuvant chemotherapy response and survival prediction in gastric cancer patients: A systematic review and meta-analysis

医学 荟萃分析 无线电技术 内科学 化疗 肿瘤科 新辅助治疗 癌症 放射科 乳腺癌
作者
Diliyaer Adili,Aibibai Mohetaer,Wenbin Zhang
出处
期刊:European Journal of Radiology [Elsevier]
卷期号:173: 111249-111249 被引量:3
标识
DOI:10.1016/j.ejrad.2023.111249
摘要

Abstract

Background

In recent years, researchers have explored the use of radiomics to predict neoadjuvant chemotherapy outcomes in gastric cancer (GC). Yet, a lingering debate persists regarding the accuracy of these predictions. Against this backdrop, this study was conducted to examine the accuracy of radiomics in predicting the response to neoadjuvant chemotherapy in GC patients.

Methods

An exhaustive search of relevant studies was conducted in PubMed, Cochrane, Embase, and Web of Science databases up to February 21, 2023. The radiomics quality scoring (RQS) tool was employed to assess study quality. Tumor response to neoadjuvant chemotherapy and survival outcomes were examined as outcome measures.

Results

Fourteen studies involving 3,373 GC patients who had received neoadjuvant chemotherapy were incorporated in our meta-analysis. The mean RQS score across all studies was 36.3%, ranging between 0 and 63.9%. On the validation cohort, when the modeling variables were restricted to radiomic features alone, the predictive performance was characterized by a c-index of 0.750 (95% CI: 0.710–0.790), with a sensitivity of 0.67 (95% CI: 0.58–0.75) and a specificity of 0.77 (95% CI: 0.69–0.84) for the prediction of neoadjuvant chemotherapy response. When clinical data was integrated with radiomic features as modeling variables, the predictive performance improved, yielding a c-index of 0.814 (95% CI: 0.780–0.847), a sensitivity of 0.78 [95% CI: 0.70–0.84], and a specificity of 0.73 [95% CI: 0.67–0.79].

Conclusions

Radiomics holds promise to noninvasively predict neoadjuvant chemotherapy response and survival outcomes among patients with locally advanced GC. Additionally, we underscore the need for future multicenter studies and the development of imaging-sourced tools for risk stratification in this patient population.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qiaoj2006完成签到,获得积分10
刚刚
顾矜应助Candice采纳,获得10
刚刚
littleJ完成签到,获得积分10
1秒前
1秒前
席冥完成签到,获得积分10
1秒前
米奇完成签到,获得积分10
2秒前
ding应助beibeimao采纳,获得10
2秒前
瘦瘦以亦发布了新的文献求助10
3秒前
Kare发布了新的文献求助10
3秒前
鲜衣怒马完成签到,获得积分10
3秒前
Lawgh完成签到,获得积分10
5秒前
dd完成签到,获得积分10
5秒前
CC关注了科研通微信公众号
5秒前
5秒前
leekle完成签到,获得积分10
6秒前
瘦瘦以亦完成签到,获得积分10
8秒前
风中清炎给风中清炎的求助进行了留言
8秒前
LiuXianBao完成签到,获得积分10
8秒前
曲初雪完成签到,获得积分10
9秒前
10秒前
琼仔仔完成签到 ,获得积分10
12秒前
13秒前
14秒前
beibeimao完成签到,获得积分10
14秒前
奋斗的萝完成签到,获得积分10
14秒前
调皮的碧彤完成签到,获得积分10
14秒前
不爱干饭发布了新的文献求助10
14秒前
潦草完成签到,获得积分20
15秒前
15秒前
喜悦静枫完成签到,获得积分10
16秒前
无敌完成签到 ,获得积分10
16秒前
领导范儿应助云云的困困采纳,获得10
17秒前
鲜衣怒马发布了新的文献求助10
17秒前
beibeimao发布了新的文献求助10
18秒前
Cassio发布了新的文献求助10
18秒前
19秒前
19秒前
20秒前
社会主义接班人完成签到 ,获得积分10
21秒前
21秒前
高分求助中
Evolution 10000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147820
求助须知:如何正确求助?哪些是违规求助? 2798873
关于积分的说明 7832037
捐赠科研通 2455841
什么是DOI,文献DOI怎么找? 1306979
科研通“疑难数据库(出版商)”最低求助积分说明 627957
版权声明 601587