Diagnostic accuracy of radiomics-based machine learning for neoadjuvant chemotherapy response and survival prediction in gastric cancer patients: A systematic review and meta-analysis

医学 荟萃分析 无线电技术 内科学 化疗 肿瘤科 新辅助治疗 癌症 放射科 乳腺癌
作者
Diliyaer Adili,Aibibai Mohetaer,Wenbin Zhang
出处
期刊:European Journal of Radiology [Elsevier]
卷期号:173: 111249-111249 被引量:9
标识
DOI:10.1016/j.ejrad.2023.111249
摘要

Abstract

Background

In recent years, researchers have explored the use of radiomics to predict neoadjuvant chemotherapy outcomes in gastric cancer (GC). Yet, a lingering debate persists regarding the accuracy of these predictions. Against this backdrop, this study was conducted to examine the accuracy of radiomics in predicting the response to neoadjuvant chemotherapy in GC patients.

Methods

An exhaustive search of relevant studies was conducted in PubMed, Cochrane, Embase, and Web of Science databases up to February 21, 2023. The radiomics quality scoring (RQS) tool was employed to assess study quality. Tumor response to neoadjuvant chemotherapy and survival outcomes were examined as outcome measures.

Results

Fourteen studies involving 3,373 GC patients who had received neoadjuvant chemotherapy were incorporated in our meta-analysis. The mean RQS score across all studies was 36.3%, ranging between 0 and 63.9%. On the validation cohort, when the modeling variables were restricted to radiomic features alone, the predictive performance was characterized by a c-index of 0.750 (95% CI: 0.710–0.790), with a sensitivity of 0.67 (95% CI: 0.58–0.75) and a specificity of 0.77 (95% CI: 0.69–0.84) for the prediction of neoadjuvant chemotherapy response. When clinical data was integrated with radiomic features as modeling variables, the predictive performance improved, yielding a c-index of 0.814 (95% CI: 0.780–0.847), a sensitivity of 0.78 [95% CI: 0.70–0.84], and a specificity of 0.73 [95% CI: 0.67–0.79].

Conclusions

Radiomics holds promise to noninvasively predict neoadjuvant chemotherapy response and survival outcomes among patients with locally advanced GC. Additionally, we underscore the need for future multicenter studies and the development of imaging-sourced tools for risk stratification in this patient population.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
羊玉林发布了新的文献求助10
刚刚
张弛华发布了新的文献求助10
1秒前
zho应助Chaha采纳,获得10
1秒前
负蕲完成签到,获得积分10
1秒前
思源应助小狗呼噜噜采纳,获得10
1秒前
ranjeah完成签到 ,获得积分10
2秒前
2秒前
2秒前
Heart完成签到,获得积分20
2秒前
3秒前
无花果应助桂花酒酿采纳,获得30
4秒前
4秒前
nikki完成签到,获得积分10
5秒前
5秒前
6秒前
gouzi发布了新的文献求助10
8秒前
8秒前
Rikki发布了新的文献求助10
8秒前
8秒前
佳音完成签到,获得积分20
9秒前
9秒前
9秒前
9秒前
9秒前
学术智子完成签到,获得积分10
9秒前
共享精神应助cdytjt采纳,获得10
9秒前
10秒前
10秒前
Thi发布了新的文献求助10
10秒前
11秒前
VDC应助LUJU采纳,获得30
11秒前
游一发布了新的文献求助10
11秒前
舟夏完成签到 ,获得积分10
11秒前
billyin发布了新的文献求助10
12秒前
12秒前
了一李应助qs采纳,获得10
12秒前
共享精神应助何必在乎采纳,获得10
13秒前
顺利的夜梦完成签到,获得积分10
13秒前
想跟这个世界讲个道理完成签到,获得积分10
13秒前
zwyingg完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589024
求助须知:如何正确求助?哪些是违规求助? 4671817
关于积分的说明 14789701
捐赠科研通 4627219
什么是DOI,文献DOI怎么找? 2532047
邀请新用户注册赠送积分活动 1500655
关于科研通互助平台的介绍 1468382