Diagnostic accuracy of radiomics-based machine learning for neoadjuvant chemotherapy response and survival prediction in gastric cancer patients: A systematic review and meta-analysis

医学 荟萃分析 无线电技术 内科学 化疗 肿瘤科 新辅助治疗 癌症 放射科 乳腺癌
作者
Diliyaer Adili,Aibibai Mohetaer,Wenbin Zhang
出处
期刊:European Journal of Radiology [Elsevier BV]
卷期号:173: 111249-111249 被引量:4
标识
DOI:10.1016/j.ejrad.2023.111249
摘要

Abstract

Background

In recent years, researchers have explored the use of radiomics to predict neoadjuvant chemotherapy outcomes in gastric cancer (GC). Yet, a lingering debate persists regarding the accuracy of these predictions. Against this backdrop, this study was conducted to examine the accuracy of radiomics in predicting the response to neoadjuvant chemotherapy in GC patients.

Methods

An exhaustive search of relevant studies was conducted in PubMed, Cochrane, Embase, and Web of Science databases up to February 21, 2023. The radiomics quality scoring (RQS) tool was employed to assess study quality. Tumor response to neoadjuvant chemotherapy and survival outcomes were examined as outcome measures.

Results

Fourteen studies involving 3,373 GC patients who had received neoadjuvant chemotherapy were incorporated in our meta-analysis. The mean RQS score across all studies was 36.3%, ranging between 0 and 63.9%. On the validation cohort, when the modeling variables were restricted to radiomic features alone, the predictive performance was characterized by a c-index of 0.750 (95% CI: 0.710–0.790), with a sensitivity of 0.67 (95% CI: 0.58–0.75) and a specificity of 0.77 (95% CI: 0.69–0.84) for the prediction of neoadjuvant chemotherapy response. When clinical data was integrated with radiomic features as modeling variables, the predictive performance improved, yielding a c-index of 0.814 (95% CI: 0.780–0.847), a sensitivity of 0.78 [95% CI: 0.70–0.84], and a specificity of 0.73 [95% CI: 0.67–0.79].

Conclusions

Radiomics holds promise to noninvasively predict neoadjuvant chemotherapy response and survival outcomes among patients with locally advanced GC. Additionally, we underscore the need for future multicenter studies and the development of imaging-sourced tools for risk stratification in this patient population.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
内向的飞松完成签到 ,获得积分10
刚刚
rosexu发布了新的文献求助30
刚刚
牧尔芙发布了新的文献求助10
刚刚
可爱的函函应助知名不具采纳,获得10
刚刚
小Q完成签到,获得积分10
刚刚
刚刚
陈隆发布了新的文献求助10
刚刚
彭于晏应助小白采纳,获得10
1秒前
1秒前
Lxx完成签到 ,获得积分10
1秒前
会飞舞的熊完成签到 ,获得积分10
2秒前
李健应助cc采纳,获得10
2秒前
英俊的铭应助Alan采纳,获得10
2秒前
卡卡龍特发布了新的文献求助10
3秒前
DDD发布了新的文献求助10
4秒前
讨厌胡萝卜完成签到,获得积分10
4秒前
5秒前
八块腹肌完成签到,获得积分10
5秒前
帅气蓝完成签到,获得积分10
6秒前
6秒前
7秒前
RNNNLL完成签到,获得积分10
7秒前
YUMI完成签到,获得积分10
8秒前
拼搏巧曼发布了新的文献求助10
9秒前
精明芷巧完成签到 ,获得积分10
9秒前
linya发布了新的文献求助50
9秒前
EvaHo完成签到,获得积分10
9秒前
传奇3应助西瓜采纳,获得10
9秒前
10秒前
阿花阿花发布了新的文献求助10
10秒前
lyn完成签到,获得积分10
10秒前
10秒前
SYLH应助木子木子李采纳,获得10
10秒前
HITvagary完成签到,获得积分10
11秒前
共享精神应助wuzhiy采纳,获得30
11秒前
大个应助绚丽多彩的灰采纳,获得10
11秒前
希望天下0贩的0应助高高采纳,获得10
11秒前
12秒前
12秒前
rioo发布了新的文献求助10
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953933
求助须知:如何正确求助?哪些是违规求助? 3499947
关于积分的说明 11097597
捐赠科研通 3230435
什么是DOI,文献DOI怎么找? 1785944
邀请新用户注册赠送积分活动 869717
科研通“疑难数据库(出版商)”最低求助积分说明 801572