Diagnostic accuracy of radiomics-based machine learning for neoadjuvant chemotherapy response and survival prediction in gastric cancer patients: A systematic review and meta-analysis

医学 荟萃分析 无线电技术 内科学 化疗 肿瘤科 新辅助治疗 癌症 放射科 乳腺癌
作者
Diliyaer Adili,Aibibai Mohetaer,Wenbin Zhang
出处
期刊:European Journal of Radiology [Elsevier BV]
卷期号:173: 111249-111249 被引量:9
标识
DOI:10.1016/j.ejrad.2023.111249
摘要

Abstract

Background

In recent years, researchers have explored the use of radiomics to predict neoadjuvant chemotherapy outcomes in gastric cancer (GC). Yet, a lingering debate persists regarding the accuracy of these predictions. Against this backdrop, this study was conducted to examine the accuracy of radiomics in predicting the response to neoadjuvant chemotherapy in GC patients.

Methods

An exhaustive search of relevant studies was conducted in PubMed, Cochrane, Embase, and Web of Science databases up to February 21, 2023. The radiomics quality scoring (RQS) tool was employed to assess study quality. Tumor response to neoadjuvant chemotherapy and survival outcomes were examined as outcome measures.

Results

Fourteen studies involving 3,373 GC patients who had received neoadjuvant chemotherapy were incorporated in our meta-analysis. The mean RQS score across all studies was 36.3%, ranging between 0 and 63.9%. On the validation cohort, when the modeling variables were restricted to radiomic features alone, the predictive performance was characterized by a c-index of 0.750 (95% CI: 0.710–0.790), with a sensitivity of 0.67 (95% CI: 0.58–0.75) and a specificity of 0.77 (95% CI: 0.69–0.84) for the prediction of neoadjuvant chemotherapy response. When clinical data was integrated with radiomic features as modeling variables, the predictive performance improved, yielding a c-index of 0.814 (95% CI: 0.780–0.847), a sensitivity of 0.78 [95% CI: 0.70–0.84], and a specificity of 0.73 [95% CI: 0.67–0.79].

Conclusions

Radiomics holds promise to noninvasively predict neoadjuvant chemotherapy response and survival outcomes among patients with locally advanced GC. Additionally, we underscore the need for future multicenter studies and the development of imaging-sourced tools for risk stratification in this patient population.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
俭朴蜜蜂发布了新的文献求助200
刚刚
依夏祭完成签到,获得积分10
1秒前
cc完成签到 ,获得积分10
1秒前
1秒前
天天快乐应助粤十一采纳,获得10
2秒前
YiJin_Wang发布了新的文献求助10
3秒前
乐情发布了新的文献求助20
3秒前
6秒前
wxs发布了新的文献求助10
6秒前
可爱的函函应助酷酷巧蟹采纳,获得10
7秒前
7秒前
blablawindy发布了新的文献求助10
8秒前
科研小白发布了新的文献求助10
9秒前
李爱国应助嘿咻采纳,获得10
9秒前
9秒前
9秒前
Steven发布了新的文献求助10
10秒前
10秒前
迟有朝完成签到,获得积分10
12秒前
崔佳慧发布了新的文献求助10
12秒前
粤十一完成签到,获得积分10
13秒前
14秒前
angelinazh完成签到,获得积分10
14秒前
粤十一发布了新的文献求助10
15秒前
15秒前
桐桐应助pura卷卷采纳,获得10
15秒前
16秒前
无花果应助端庄的如花采纳,获得10
17秒前
Hello应助咸鱼咸采纳,获得10
18秒前
张铁柱完成签到,获得积分10
18秒前
天天快乐应助崔佳慧采纳,获得10
18秒前
卢卢完成签到,获得积分10
20秒前
foreverchoi发布了新的文献求助10
20秒前
酷酷巧蟹发布了新的文献求助10
20秒前
20秒前
所所应助科研通管家采纳,获得10
21秒前
Hello应助科研通管家采纳,获得10
21秒前
Lucas应助科研通管家采纳,获得10
21秒前
传奇3应助科研通管家采纳,获得10
21秒前
SciGPT应助科研通管家采纳,获得30
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4578059
求助须知:如何正确求助?哪些是违规求助? 3997093
关于积分的说明 12374500
捐赠科研通 3671156
什么是DOI,文献DOI怎么找? 2023295
邀请新用户注册赠送积分活动 1057253
科研通“疑难数据库(出版商)”最低求助积分说明 944206