Image Compression Based on Near Lossless Predictive Measurement Coding for Block-Based Compressive Sensing

无损压缩 计算机科学 图像压缩 数据压缩 压缩比 图像质量 JPEG格式 算法 图像处理 人工智能 图像(数学) 工程类 汽车工程 内燃机
作者
K. L. Bhanuprakash Reddy,Vikramkumar Pudi,Balasubramanyam Appina,Anupam Chattopadhyay
出处
期刊:IEEE Transactions on Circuits and Systems Ii-express Briefs [Institute of Electrical and Electronics Engineers]
卷期号:71 (5): 2799-2803 被引量:1
标识
DOI:10.1109/tcsii.2023.3348288
摘要

Smart devices for image/video sensing are needed to work within the constraints of limited bandwidth and low computing capabilities. In this context, Block based Compressive Sensing (BCS) emerged as the most viable method for balancing image/video quality and transmission bandwidth computing overheads. However, in comparison with conventional image and video acquisition systems, BCS cannot reduce the bitrate due to its straightforward nature of system of linear equations, which still incurs high transmission and storage overhead. To address this shortcoming, in this paper we propose a novel Near Lossless Predictive Coding (NLPC) approach to compress BCS measurements. The NLPC method encodes the prediction error measurement between the target and current measurement, resulting in lower data size. We designed and implemented a complete BCS integrated with NLPC with scalar quantization (BCS-NLPC-SQ) and studied the image quality at different compression ratios with varying block sizes. The BCS-NLPC-SQ method can improve roughly on an average PSNR of +3.06 dB and the average SSIM gain of +0.11 with respect to the existing works. The synthesis results shows that, BCS-NLPC-SQ requires 83.01%, 69.03%, 53.26%, and 14.45% less area, power, ADP and PDP over JPEG compression and we have achieved an additional compression of up to 56.25% in the best case. Our proposed BCS-NLPC-SQ method outperformed the existing methods in terms of PSNR, SSIM, and bpp.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
快乐莆发布了新的文献求助30
刚刚
sadasd发布了新的文献求助10
刚刚
Mushroom007发布了新的文献求助10
刚刚
1秒前
PowerQ发布了新的文献求助10
1秒前
1秒前
烟花应助young采纳,获得10
2秒前
星辰大海应助有足量NaCl采纳,获得10
2秒前
2秒前
ning完成签到,获得积分10
2秒前
tmw完成签到,获得积分10
2秒前
夏秋完成签到 ,获得积分10
2秒前
xxx77发布了新的文献求助10
3秒前
3秒前
5秒前
5秒前
九黎发布了新的文献求助10
6秒前
Joyj99发布了新的文献求助10
6秒前
6秒前
cherryfa发布了新的文献求助10
8秒前
甜芋发布了新的文献求助10
8秒前
橙色小瓶子完成签到,获得积分10
8秒前
8秒前
9秒前
jialin发布了新的文献求助10
9秒前
Hbobo完成签到,获得积分10
11秒前
11秒前
英勇的幻露完成签到,获得积分10
11秒前
情怀应助lily采纳,获得10
11秒前
拆东墙发布了新的文献求助10
11秒前
夏天来了发布了新的文献求助10
12秒前
xzh驳回了李健应助
12秒前
Mushroom007完成签到,获得积分10
12秒前
12秒前
灵试巧开发布了新的文献求助30
13秒前
乐乐应助xu采纳,获得10
13秒前
sadasd完成签到,获得积分10
13秒前
Leila发布了新的文献求助20
14秒前
zhegewa完成签到,获得积分10
15秒前
欢喜的小天鹅完成签到 ,获得积分10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3553771
求助须知:如何正确求助?哪些是违规求助? 3129584
关于积分的说明 9383226
捐赠科研通 2828746
什么是DOI,文献DOI怎么找? 1555126
邀请新用户注册赠送积分活动 725831
科研通“疑难数据库(出版商)”最低求助积分说明 715267