多重共线性
估计员
主成分回归
数学
普通最小二乘法
统计
均方误差
主成分分析
线性回归
计量经济学
作者
Dan Huang,Jiewu Huang,Dewei Bai
标识
DOI:10.1080/03610918.2023.2292970
摘要
Statistical inference with the ordinary least squares (OLS) estimator is frequently influenced when there is a multicollinearity in the linear regression model. In this article, to reduce these effects of multicollinearity, we generalize the modified Kibria–Lukman principal component (MKLPC) estimator in the linear regression model by combining the principal component regression (PCR) estimator and the modified Kibria–Lukman (MKL) estimator. Meanwhile, the necessary and sufficient conditions for the superiority of the MKLPC estimator over OLS, PCR, Ridge, r-k, Liu, r-d, k-d, KL, and MKL estimators in the mean squared error (MSE) criterion are derived. Furthermore, we conduct Monte Carlo simulation and empirical analysis to compare these estimators under the MSE criterion.
科研通智能强力驱动
Strongly Powered by AbleSci AI