An aimed review of current advances, challenges, and future perspectives of TiO2-based S-scheme heterojunction photocatalysts

光催化 材料科学 异质结 纳米技术 催交 太阳能燃料 计算机科学 光电子学 催化作用 工程类 系统工程 化学 生物化学
作者
Irshad Ahmad,Shazia Shukrullah,Muhammad Yasin Naz,Ejaz Ahmed,Mukhtar Ahmad,Ahmad J. Obaidullah,Anas Alkhouri,Ahmed Mahal,Yazeed Yasin Ghadi
出处
期刊:Materials Science in Semiconductor Processing [Elsevier BV]
卷期号:172: 108088-108088 被引量:14
标识
DOI:10.1016/j.mssp.2023.108088
摘要

Photocatalytic technology is fascinating the world due to its potential to combat global warming caused by CO2 emissions, split water to generate H2 fuel, and remediate water pollution. TiO2 has been regarded as a fascinating photocatalytic material because of its low-cost, abundance, and effective photoresponse. However, efficiency bottlenecks with TiO2 outlets persist, involving a lack of visible light harvesting due to its intrinsic large bandgap and inadequate separation of photoinduced charges. To boost efficiency at the industrial levels, visible light-sensitive TiO2 photocatalysts with the lowest recombination of photocarriers are required. TiO2-based S-scheme heterosystems have emerged as the most promising candidates due to their low charge recombination loss, strong redox ability, and high performance. Herein, this review article summarizes recent advances in the construction of outstanding TiO2-based S-scheme heterosystems, including scientific introduction, fundamental design concepts, crystal structures of TiO2, characterization methods, and design strategies of TiO2-based S-scheme heterojunction photocatalysts. In particular, the contributions of morphological control, oxygen vacancy, co-catalyst loading, structural design, and nanocarbon loading in TiO2-based S-scheme photocatalysts are examined in detail, research gaps are identified, and recommendations are proposed. The current review aims to motivate more novel research on the rational construction of metal oxides-based S-scheme photocatalysts, hence expediting the advancement of highly efficient S-scheme photocatalysts for a wide range of applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
七七丫完成签到,获得积分10
刚刚
李健应助烈阳采纳,获得10
1秒前
可爱的函函应助Addy采纳,获得10
1秒前
是是是完成签到,获得积分10
1秒前
李健应助核桃采纳,获得10
1秒前
传奇3应助核桃采纳,获得10
1秒前
科研通AI5应助淡定草丛采纳,获得10
1秒前
耍酷的汲发布了新的文献求助10
1秒前
余晖霞光发布了新的文献求助10
1秒前
2秒前
俊逸湘发布了新的文献求助10
2秒前
bkagyin应助健忘的海莲采纳,获得10
2秒前
今后应助lynne采纳,获得30
2秒前
爆米花应助毕业顺利采纳,获得10
2秒前
树枝发布了新的文献求助10
2秒前
贺静怡发布了新的文献求助30
2秒前
田様应助风想随心采纳,获得10
3秒前
4秒前
4秒前
科研通AI5应助ming采纳,获得10
5秒前
5秒前
彭于彦祖应助朴实的面包采纳,获得20
5秒前
望除应助ZS0901采纳,获得10
5秒前
asdfas完成签到 ,获得积分20
5秒前
乐乐应助sdl采纳,获得10
6秒前
栗子完成签到,获得积分10
7秒前
jimskylxk发布了新的文献求助10
8秒前
8秒前
科研通AI5应助二十五采纳,获得10
8秒前
zp完成签到,获得积分20
10秒前
Selonfer完成签到,获得积分10
10秒前
10秒前
阿喵发布了新的文献求助10
11秒前
MX应助复杂的从彤采纳,获得10
11秒前
12秒前
三七二一完成签到,获得积分10
13秒前
13秒前
Groot完成签到,获得积分20
13秒前
俊逸湘完成签到,获得积分10
15秒前
15秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842227
求助须知:如何正确求助?哪些是违规求助? 3384336
关于积分的说明 10534304
捐赠科研通 3104803
什么是DOI,文献DOI怎么找? 1709801
邀请新用户注册赠送积分活动 823377
科研通“疑难数据库(出版商)”最低求助积分说明 774048