Diagnostic plasma small extracellular vesicles miRNA signatures for pancreatic cancer using machine learning methods

胰腺癌 生物标志物 小RNA 血管生成 基质 医学 转移 发病机制 胰腺炎 癌症 癌症研究 细胞外小泡 内科学 病理 肿瘤科 生物 免疫组织化学 基因 生物化学 细胞生物学
作者
Xiaofan Pu,Chaolei Zhang,Guoping Ding,Hongpeng Gu,Yang Lv,Tao Shen,Tianshu Pang,Liping Cao,Shengnan Jia
出处
期刊:Translational Oncology [Elsevier BV]
卷期号:40: 101847-101847 被引量:3
标识
DOI:10.1016/j.tranon.2023.101847
摘要

Identifying biomarkers may lead to easier detection and a better understanding of pathogenesis of pancreatic ductal adenocarcinoma (PDAC). Plasma small extracellular vesicles (sEV) from 106 participants, including 20 healthy controls (HC), 12 chronic pancreatitis (CP) patients, 12 benign pancreatic tumour (BPT) patients, and 58 PDAC patients, were profiled for microRNA (miRNA) sequencing. Three machine learning methods were applied to establish and evaluate the diagnostic model. The plasma sEV miRNA diagnostic signature (d-signature) selected using the three machine learning methods could distinguish PDAC patients from non-PDAC individuals, HC, and benign pancreatic disease (BPD, CP plus BPT) both in training and validation cohort. Combining the d-signature with carbohydrate antigen 19-9 (CA19-9) performed better than with each model alone. Plasma sEV miR-664a-3p was selected by all methods and used to predict PDAC diagnosis with high accuracy combined with CA19-9. Plasma sEV miR-664a-3p was significantly positively associated with the presence of vascular invasion, lower surgery ratio, and poor differentiation. MiR-664a-3p was mainly distributed in the PDAC cancer stroma, including fibers and vessels, and was accompanied by VEGFA expression. Overexpression of miR-664a-3p could promote the epithelial-mesenchymal transition (EMT) and angiogenesis. In conclusion, our study demonstrated the potential utility of the sEV-miRNA d-signature in the diagnosis of PDAC via machine learning methods. A novel sEV biomarker, miR-664a-3p, was identified for the diagnosis of PDAC. It can also potentially promote angiogenesis and metastasis, provide insight into PDAC pathogenesis, and reveal novel regulators of this disease.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
满意的迎南完成签到 ,获得积分10
3秒前
yuyu发布了新的文献求助10
5秒前
8秒前
12秒前
lzdyyy发布了新的文献求助10
12秒前
害怕的不评完成签到,获得积分10
13秒前
跳跳熊完成签到,获得积分10
13秒前
青青完成签到 ,获得积分10
15秒前
Jasper应助直率的花生采纳,获得10
17秒前
18秒前
二三发布了新的文献求助10
18秒前
18秒前
紫薯球完成签到,获得积分10
20秒前
香蕉觅云应助Bonnie采纳,获得10
20秒前
hwq123完成签到,获得积分10
21秒前
zhuanghj5完成签到 ,获得积分10
22秒前
副本完成签到 ,获得积分10
22秒前
言无间发布了新的文献求助20
22秒前
科研菜狗发布了新的文献求助10
22秒前
暄暄完成签到 ,获得积分10
22秒前
Akim应助Eureka采纳,获得10
24秒前
懒羊羊发布了新的文献求助10
25秒前
Zer完成签到,获得积分10
26秒前
美丽秋蝶完成签到,获得积分20
30秒前
Ava应助二三采纳,获得10
31秒前
32秒前
cmq完成签到 ,获得积分10
32秒前
32秒前
37秒前
SS关闭了SS文献求助
37秒前
邓云峰888完成签到,获得积分10
37秒前
lzdyyy发布了新的文献求助10
37秒前
曼曼发布了新的文献求助10
37秒前
40秒前
41秒前
41秒前
41秒前
alt发布了新的文献求助10
45秒前
年轻蓝发布了新的文献求助10
45秒前
刻苦冰颜发布了新的文献求助10
46秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966223
求助须知:如何正确求助?哪些是违规求助? 3511662
关于积分的说明 11159065
捐赠科研通 3246265
什么是DOI,文献DOI怎么找? 1793321
邀请新用户注册赠送积分活动 874331
科研通“疑难数据库(出版商)”最低求助积分说明 804343