已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Dynamic Object-aware LiDAR Odometry Aided by Joint Weightings Estimation in Urban Areas

里程计 激光雷达 点云 计算机科学 对象(语法) 人工智能 计算机视觉 点(几何) 目标检测 遥感 模式识别(心理学) 机器人 数学 地理 移动机器人 几何学
作者
Feng Huang,Weisong Wen,Jiachen Zhang,Chaoqun Wang,Li‐Ta Hsu
出处
期刊:IEEE transactions on intelligent vehicles [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15
标识
DOI:10.1109/tiv.2023.3338141
摘要

Dynamic object detection from point clouds has been widely studied in recent years to achieve accurate and robust LiDAR odometry for autonomous driving. Satisfactory accuracy can be achieved by Dynamic object detection from point clouds has been widely studied in recent years to achieve accurate and robust LiDAR odometry for autonomous driving. Satisfactory accuracy can be achieved by detecting and removing the object points in the urban environment. However, it is still not clear how dynamic objects numerically affect the performance of LiDAR odometry. In addition, the existing solutions tended to directly remove the LiDAR features belonging to the dynamic object, which can lead to the degradation of the geometry constraints of the surrounding features. This paper aims to give answers to these problems by evaluating the effects of dynamic objects as well as reweighting both dynamic objects and static objects. Three factors affecting the performance of LiDAR odometry in highly dynamic scenarios, including the number , geometry distribution , and velocity of the dynamic objects , are first extensively studied using generated scenarios by leveraging real data. Instead of brutely removing the dynamic features, this paper proposes to adaptively assign weightings to the dynamic features. Then both the dynamic and static features are employed to estimate the LiDAR odometry. The effectiveness of the proposed method is verified using UrbanNav and nuScenes datasets that include numerous dynamic and static objects. To benefit the community, the implementation of the dynamic vehicle simulator and the code for the proposed method are both open-sourced.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嘻嘻哈哈完成签到 ,获得积分10
刚刚
Hana完成签到,获得积分10
1秒前
crown1010完成签到,获得积分10
2秒前
王波完成签到 ,获得积分10
2秒前
Jalynn2044完成签到 ,获得积分10
3秒前
fareless完成签到 ,获得积分10
4秒前
绾妤完成签到 ,获得积分10
8秒前
虚心的鹭洋完成签到,获得积分10
8秒前
chemhub完成签到,获得积分10
8秒前
玖月完成签到 ,获得积分10
9秒前
10秒前
Jiawen完成签到,获得积分10
11秒前
CC完成签到 ,获得积分10
12秒前
13秒前
老鼠耗子完成签到,获得积分10
14秒前
14秒前
14秒前
xiuxiu完成签到 ,获得积分10
16秒前
wanci应助虚心的鹭洋采纳,获得10
16秒前
wentong完成签到,获得积分10
16秒前
娜娜子完成签到 ,获得积分10
16秒前
肖亚鑫完成签到,获得积分10
17秒前
17秒前
17秒前
nuliguan完成签到 ,获得积分10
17秒前
刺五加完成签到 ,获得积分10
18秒前
mochi发布了新的文献求助10
20秒前
阳和启蛰完成签到 ,获得积分10
21秒前
七宝大当家完成签到,获得积分10
21秒前
所所应助科研通管家采纳,获得10
22秒前
赘婿应助科研通管家采纳,获得10
22秒前
Jasper应助科研通管家采纳,获得10
22秒前
22秒前
22秒前
爆米花应助科研通管家采纳,获得10
22秒前
11发布了新的文献求助30
23秒前
牧青完成签到,获得积分20
23秒前
28秒前
牧青发布了新的文献求助10
32秒前
wangyr11发布了新的文献求助10
33秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3491218
求助须知:如何正确求助?哪些是违规求助? 3077861
关于积分的说明 9150845
捐赠科研通 2770369
什么是DOI,文献DOI怎么找? 1520305
邀请新用户注册赠送积分活动 704552
科研通“疑难数据库(出版商)”最低求助积分说明 702253