已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Dynamic Object-Aware LiDAR Odometry Aided by Joint Weightings Estimation in Urban Areas

里程计 激光雷达 点云 计算机科学 对象(语法) 人工智能 计算机视觉 点(几何) 目标检测 遥感 模式识别(心理学) 机器人 数学 地理 移动机器人 几何学
作者
Feng Huang,Weisong Wen,Jiachen Zhang,Chaoqun Wang,Li‐Ta Hsu
出处
期刊:IEEE transactions on intelligent vehicles [Institute of Electrical and Electronics Engineers]
卷期号:9 (2): 3345-3359
标识
DOI:10.1109/tiv.2023.3338141
摘要

Dynamic object detection from point clouds has been widely studied in recent years to achieve accurate and robust LiDAR odometry for autonomous driving. Satisfactory accuracy can be achieved by Dynamic object detection from point clouds has been widely studied in recent years to achieve accurate and robust LiDAR odometry for autonomous driving. Satisfactory accuracy can be achieved by detecting and removing the object points in the urban environment. However, it is still not clear how dynamic objects numerically affect the performance of LiDAR odometry. In addition, the existing solutions tended to directly remove the LiDAR features belonging to the dynamic object, which can lead to the degradation of the geometry constraints of the surrounding features. This paper aims to give answers to these problems by evaluating the effects of dynamic objects as well as reweighting both dynamic objects and static objects. Three factors affecting the performance of LiDAR odometry in highly dynamic scenarios, including the number , geometry distribution , and velocity of the dynamic objects , are first extensively studied using generated scenarios by leveraging real data. Instead of brutely removing the dynamic features, this paper proposes to adaptively assign weightings to the dynamic features. Then both the dynamic and static features are employed to estimate the LiDAR odometry. The effectiveness of the proposed method is verified using UrbanNav and nuScenes datasets that include numerous dynamic and static objects. To benefit the community, the implementation of the dynamic vehicle simulator and the code for the proposed method are both open-sourced.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
千跃应助leclare采纳,获得10
刚刚
刚刚
2秒前
自然的沛山完成签到 ,获得积分10
3秒前
RSU完成签到,获得积分10
3秒前
蕃茄鱼完成签到,获得积分10
4秒前
4秒前
4秒前
一个可爱的人完成签到 ,获得积分10
6秒前
wyz完成签到 ,获得积分10
6秒前
6秒前
meow完成签到 ,获得积分10
7秒前
mumu完成签到 ,获得积分10
8秒前
蒋清亦完成签到 ,获得积分10
8秒前
汤圆完成签到 ,获得积分10
8秒前
8秒前
甘sir完成签到 ,获得积分10
8秒前
满眼星辰完成签到 ,获得积分10
9秒前
9秒前
内向的哈密瓜完成签到,获得积分10
9秒前
ccc完成签到,获得积分10
9秒前
9秒前
sunnian发布了新的文献求助10
9秒前
10秒前
10秒前
766465完成签到 ,获得积分0
10秒前
淡淡博完成签到,获得积分10
11秒前
shame完成签到 ,获得积分10
12秒前
OSASACB完成签到 ,获得积分10
13秒前
情怀应助好了没了采纳,获得10
13秒前
14秒前
淡淡博发布了新的文献求助30
14秒前
细腻的语柳完成签到,获得积分10
14秒前
木子弓长发布了新的文献求助10
14秒前
ding应助深情的阿宇采纳,获得10
15秒前
HMG1COA完成签到 ,获得积分10
15秒前
无聊的人完成签到 ,获得积分10
16秒前
蒋清亦关注了科研通微信公众号
16秒前
17秒前
清爽的诗云完成签到 ,获得积分10
17秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968146
求助须知:如何正确求助?哪些是违规求助? 3513140
关于积分的说明 11166611
捐赠科研通 3248319
什么是DOI,文献DOI怎么找? 1794192
邀请新用户注册赠送积分活动 874904
科研通“疑难数据库(出版商)”最低求助积分说明 804629