Dynamic Object-Aware LiDAR Odometry Aided by Joint Weightings Estimation in Urban Areas

里程计 激光雷达 点云 计算机科学 对象(语法) 人工智能 计算机视觉 点(几何) 目标检测 遥感 模式识别(心理学) 机器人 数学 地理 移动机器人 几何学
作者
Feng Huang,Weisong Wen,Jiachen Zhang,Chaoqun Wang,Li‐Ta Hsu
出处
期刊:IEEE transactions on intelligent vehicles [Institute of Electrical and Electronics Engineers]
卷期号:9 (2): 3345-3359
标识
DOI:10.1109/tiv.2023.3338141
摘要

Dynamic object detection from point clouds has been widely studied in recent years to achieve accurate and robust LiDAR odometry for autonomous driving. Satisfactory accuracy can be achieved by Dynamic object detection from point clouds has been widely studied in recent years to achieve accurate and robust LiDAR odometry for autonomous driving. Satisfactory accuracy can be achieved by detecting and removing the object points in the urban environment. However, it is still not clear how dynamic objects numerically affect the performance of LiDAR odometry. In addition, the existing solutions tended to directly remove the LiDAR features belonging to the dynamic object, which can lead to the degradation of the geometry constraints of the surrounding features. This paper aims to give answers to these problems by evaluating the effects of dynamic objects as well as reweighting both dynamic objects and static objects. Three factors affecting the performance of LiDAR odometry in highly dynamic scenarios, including the number , geometry distribution , and velocity of the dynamic objects , are first extensively studied using generated scenarios by leveraging real data. Instead of brutely removing the dynamic features, this paper proposes to adaptively assign weightings to the dynamic features. Then both the dynamic and static features are employed to estimate the LiDAR odometry. The effectiveness of the proposed method is verified using UrbanNav and nuScenes datasets that include numerous dynamic and static objects. To benefit the community, the implementation of the dynamic vehicle simulator and the code for the proposed method are both open-sourced.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jqs完成签到,获得积分10
刚刚
英姑应助Atopos采纳,获得10
1秒前
1秒前
机会完成签到,获得积分10
2秒前
冷如松发布了新的文献求助10
2秒前
woaikeyan发布了新的文献求助60
2秒前
SSS完成签到,获得积分10
2秒前
2秒前
玖玖完成签到,获得积分10
2秒前
SciGPT应助专注白昼采纳,获得10
2秒前
emily完成签到,获得积分10
3秒前
3秒前
Left发布了新的文献求助20
3秒前
小黄人完成签到,获得积分10
3秒前
3秒前
西地兰卡发布了新的文献求助10
3秒前
笑容可圈可点完成签到,获得积分10
3秒前
小蘑菇应助April采纳,获得10
3秒前
很美味发布了新的文献求助10
4秒前
嘻嘻哈哈完成签到 ,获得积分10
4秒前
大模型应助夕荀采纳,获得10
4秒前
4秒前
fh发布了新的文献求助10
5秒前
油菜花完成签到,获得积分10
5秒前
Owen应助多喝白开水采纳,获得10
5秒前
LAN完成签到,获得积分10
5秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
帅气不惜完成签到,获得积分10
5秒前
张朔发布了新的文献求助10
5秒前
玖玖发布了新的文献求助10
5秒前
6秒前
哈哈哈哈哈哈完成签到,获得积分10
6秒前
迷你的傲白完成签到 ,获得积分10
6秒前
亦安完成签到,获得积分10
6秒前
zpp完成签到,获得积分10
6秒前
奔波霸完成签到,获得积分10
6秒前
苏silence发布了新的文献求助10
6秒前
Angelo完成签到 ,获得积分10
6秒前
雷雷完成签到 ,获得积分10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573926
求助须知:如何正确求助?哪些是违规求助? 4660203
关于积分的说明 14728382
捐赠科研通 4599980
什么是DOI,文献DOI怎么找? 2524638
邀请新用户注册赠送积分活动 1494989
关于科研通互助平台的介绍 1465005