Dynamic Object-Aware LiDAR Odometry Aided by Joint Weightings Estimation in Urban Areas

里程计 激光雷达 点云 计算机科学 对象(语法) 人工智能 计算机视觉 点(几何) 目标检测 遥感 模式识别(心理学) 机器人 数学 地理 移动机器人 几何学
作者
Feng Huang,Weisong Wen,Jiachen Zhang,Chaoqun Wang,Li‐Ta Hsu
出处
期刊:IEEE transactions on intelligent vehicles [Institute of Electrical and Electronics Engineers]
卷期号:9 (2): 3345-3359
标识
DOI:10.1109/tiv.2023.3338141
摘要

Dynamic object detection from point clouds has been widely studied in recent years to achieve accurate and robust LiDAR odometry for autonomous driving. Satisfactory accuracy can be achieved by Dynamic object detection from point clouds has been widely studied in recent years to achieve accurate and robust LiDAR odometry for autonomous driving. Satisfactory accuracy can be achieved by detecting and removing the object points in the urban environment. However, it is still not clear how dynamic objects numerically affect the performance of LiDAR odometry. In addition, the existing solutions tended to directly remove the LiDAR features belonging to the dynamic object, which can lead to the degradation of the geometry constraints of the surrounding features. This paper aims to give answers to these problems by evaluating the effects of dynamic objects as well as reweighting both dynamic objects and static objects. Three factors affecting the performance of LiDAR odometry in highly dynamic scenarios, including the number , geometry distribution , and velocity of the dynamic objects , are first extensively studied using generated scenarios by leveraging real data. Instead of brutely removing the dynamic features, this paper proposes to adaptively assign weightings to the dynamic features. Then both the dynamic and static features are employed to estimate the LiDAR odometry. The effectiveness of the proposed method is verified using UrbanNav and nuScenes datasets that include numerous dynamic and static objects. To benefit the community, the implementation of the dynamic vehicle simulator and the code for the proposed method are both open-sourced.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
天天快乐应助科研通管家采纳,获得10
1秒前
Orange应助科研通管家采纳,获得10
1秒前
乌冬面发布了新的文献求助10
1秒前
脑洞疼应助科研通管家采纳,获得10
1秒前
聪慧小霜应助科研通管家采纳,获得30
1秒前
sxr完成签到,获得积分10
1秒前
搜集达人应助科研通管家采纳,获得10
1秒前
打打应助科研通管家采纳,获得10
1秒前
Owen应助科研通管家采纳,获得10
1秒前
CipherSage应助科研通管家采纳,获得10
2秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
上官若男应助我迷了鹿采纳,获得10
2秒前
2秒前
英俊的铭应助cute666采纳,获得10
2秒前
顾矜应助科研通管家采纳,获得20
2秒前
ding应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
yz123完成签到,获得积分20
2秒前
上官若男应助纸质超人采纳,获得10
3秒前
盛景洲完成签到,获得积分20
3秒前
山山而川发布了新的文献求助10
3秒前
所所应助SY采纳,获得10
3秒前
xiaodong完成签到,获得积分10
3秒前
面缺陷发布了新的文献求助10
4秒前
Gotyababy发布了新的文献求助10
4秒前
安静海云发布了新的文献求助10
5秒前
孔雀翎完成签到,获得积分10
6秒前
柳劲南完成签到,获得积分10
6秒前
6秒前
打打应助zy采纳,获得10
6秒前
7秒前
8秒前
yck1027发布了新的文献求助10
8秒前
8秒前
善学以致用应助Blank采纳,获得10
8秒前
8秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603996
求助须知:如何正确求助?哪些是违规求助? 4012488
关于积分的说明 12423933
捐赠科研通 3693069
什么是DOI,文献DOI怎么找? 2036050
邀请新用户注册赠送积分活动 1069178
科研通“疑难数据库(出版商)”最低求助积分说明 953646