Path planning for mobile robots in unstructured orchard environments: An improved kinematically constrained bi-directional RRT approach

运动规划 移动机器人 路径(计算) 计算机科学 运动学 机器人 任意角度路径规划 避障 障碍物 树(集合论) 路径长度 随机树 数学优化 人工智能 实时计算 模拟 数学 计算机网络 地理 数学分析 物理 考古 经典力学
作者
Lei Ye,Fengyun Wu,Xiangjun Zou,Jin Li
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:215: 108453-108453 被引量:48
标识
DOI:10.1016/j.compag.2023.108453
摘要

In complex orchard environments, efficient path-planning algorithms for mobile robots are crucial for achieving accurate autonomous navigation and mobile operations. The existence of kinematic constraints for mobile robots in orchards and the unstructured layouts of orchard environments, which primarily feature irregular obstacles, pose considerable challenges for path-planning algorithms. Ideal path-planning algorithms must overcome the above problems and plan navigation paths that are safe, efficient, and consistent with the kinematic constraints of mobile robots in an obstacle-filled environment. In this study, to satisfy the above requirements, the Improved Kinematically Constrained Bi-directional Rapidly Exploring Random Tree (IKB-RRT) algorithm is proposed, which includes three innovations. First, an improved artificial potential field method is designed for guidance-node generation in complex orchard environments; hence, the nodes provide the path guidance for the random expansion trees that are subject to the kinematic constraints, avoiding obstacle regions and expanding towards the target point. Second, a motion-control parameter sampling method for the robot configuration is introduced to control the random expansion tree to generate path nodes and trajectories that satisfy the mobile robot constraints. Third, a path optimization strategy for dual-tree connected regions is proposed to avoid sudden changes in the heading angle at dual-tree connected waypoints and to improve the overall path smoothness. Path planning is performed in four orchard environments with different characteristics. The algorithm test results show that, in different scenarios, the proposed IKB-RRT algorithm reduces the path length by a maximum of 13.94% and 12.20% and the planning time by a maximum of 61.41% and 68.84%, significantly improving the overall smoothness of the path relative to the KB-RRT* and KB-RRT algorithms, respectively. The results fully verify that the IKB-RRT algorithm has obvious advantages in handling the path-planning problem that arises for mobile robots in complex orchard environments. The proposed algorithm can be implemented in future orchard mobile robots to enable effective path planning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助花生仔采纳,获得10
刚刚
CipherSage应助喜多采纳,获得10
刚刚
今后应助Cheney采纳,获得10
1秒前
郑昕怡发布了新的文献求助10
1秒前
调研昵称发布了新的文献求助10
1秒前
2秒前
韩木木完成签到,获得积分10
2秒前
脑洞疼应助科研通管家采纳,获得10
3秒前
3秒前
英姑应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
劲秉应助BYW采纳,获得10
3秒前
共享精神应助科研通管家采纳,获得10
3秒前
脑洞疼应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
爆米花应助科研通管家采纳,获得10
4秒前
4秒前
研友_VZG7GZ应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
英俊的铭应助科研通管家采纳,获得10
4秒前
lier应助科研通管家采纳,获得10
4秒前
汉堡包应助科研通管家采纳,获得10
4秒前
Hello应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
4秒前
4秒前
4秒前
5秒前
美美完成签到,获得积分10
5秒前
5秒前
典雅的俊驰应助方墨采纳,获得30
5秒前
5秒前
6秒前
思源应助hyw010724采纳,获得10
6秒前
7秒前
YYJ25完成签到,获得积分10
7秒前
7秒前
微笑迎南发布了新的文献求助10
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Theory of Block Polymer Self-Assembly 750
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3513807
求助须知:如何正确求助?哪些是违规求助? 3096157
关于积分的说明 9230637
捐赠科研通 2791304
什么是DOI,文献DOI怎么找? 1531727
邀请新用户注册赠送积分活动 711625
科研通“疑难数据库(出版商)”最低求助积分说明 706899